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ABSTRACT

This report is the second part of an investigation of the so called ODomi;iant Label
Selector", (DLS) which is the rear stage of a novel associative memory called 'Selective
Reflexive Memory" (SRM). The front stage of the SRM consists of a Bidirectional Linear
Transformer (BLT) the output of which is processed by the DLS. The BLT transforms a
bipolar input x into a linear combination of Hadamard vectors, 4nd the task of the DLS is
to select the dominant Hadamard vector from this linear combination. This vector is then
returned to the BLT for a back stroke, which produces the storid vector closest to x. An
attractive choice of DLS is the "Quadratic Hadamard Memory", which employs quadratic
activations, and stores Hadamard vectors. Previously, this DLS was investigated by means
of the asynchronous discrete model. In the ftwpene report the investigation of the Quadratic
Hadamard Memory is extended to the continuous model in which input capacitance and
resistance of amplifiers is accounted for, and the coupling between BLT and DLS can be
studied.

A Liapunov function ("energy") is constructed, and it follows that the DLS is
stable. Sufficient conditions or instability of stationary states are derived from the energy
and also from the equations of motion, in terms of the divergence of the flow in activation
space. The energy landscape is explored for the case of maximum symmetry, i.e., for zero
thresholds. We find a small central crater with an undulated ridge. Gullies run in the radial
direction, over the ridge, and down the outer slopes, toward the Hadamard points. The
deepest gullies are those directed towards a Hadamard point. The stationary points on the
ridge are unstable and found to have principal Hadamard spectra, i.e., their signals are
proportional to the sum of m Hadamard vectors. For m=l, the signal is proportional to a
single Hadamard vector (the spectrum is "pure"). For this case, and also for principal
spectra with m=2, the signal path is a radial line. For principal spectra with larger m, the
path curves in the region where the neuron output function is nonlinear. The dynamics is
decomposed into longitudinal and transverse parts. This decomposition leads to an
adiabatic fake dynamics, in which the signal is constraint on a hypersphere HR, and the
longitudinal dynamics is omitted. We let the signal find its transverse equilibrium on HR
before going to the next hypersphere HR+dR. The succession of transverse equilibria
forms the transverse adiabatic path. This path is found to link the stationary points of the
true dynamics with signal points that have principal spectra in the proportional region, i.e.,
in the region where the signals are proportional to the activations, either exactly or
approximately. It is found that for thresholds with principal spectra, the signal spectrum is
conserved in the proportional region. If the BLT output u is applied to the DLS as external T
coupling, and a certain large uniform threshold term is added, then the DLS has as only
bipolar stationary points the Hadamard points. However, the large uniform threshold term
spoils the early dynamics, by pushing the signal point out of the gully that runs to the
Hadamard point that is dominant in the BLT output u. To avoid this from happening, the
large uniform threshold term is omitted, but then, spurious stable states are let back in. It --
is shown however that such spurious states are dynamically inaccessible if the external For
coupling constant is chosen properly, and the gain is large enough. This is shown in a -
tedious analysis which circumvents the need to integrate the N coupled nonlinear 0
differential equations, something I cannot do. In the proportional region these equations d 5
can be integrated in spite of the nonlinear selfcoupling (i.e., the quadratic activation). For ion
small coupling constant, the signals in this region undergo spectral purification, which can
be made as large as desired by choosing the gain large enough. In this purification the
dominant Hadamard component in the signal becomes even more dominant as time goes in/
on. After the leaving the proportional region, a final purification takes place which makes
the spectrum pure, i.e., the signal becomes a single Hadamard vector. Thus we have a proof tty Codoe
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that a DLS of dimension N (needs to be a power of 2, but is otherwise arbitrary),
externally coupled to a BLT, will provide perfect associative recall of N stored vectors, if
the coupling constant is chosen properly, and the gain is large enough. Large gains are
desirable, but the coupling constants specified in the theorem are much too small for
practical applications.

Numerical computations have been performed for SRMs of dimension N=8 and 16,
for large gains and practical values of the coupling constant. Perfect associative recall was
found of N random stored bipolar vectors, for any bipolar input with a unique nearest
stored vector.

Because of the length of the paper, we show an overview of the sections and the
theorems, stated in abbreviated form, for the purpose of orientation only.

INTRODUCTION
SELECTIVE REFLEXIVE MEMORY (SRM)
DOMINANT LABEL SELECTOR (DLS)
CONTINUOUS MODEL FOR DLS
NEURON OUTPUT FUNCTIONS
THE ENERGY
Theorem 1: The DLS is stable.

SPECIFIC FORMS OF EQUATIONS OF MOTION AND ENERGY
COUPLING SCHEMES
DYNAMIC REGIONS
STATIONARY POINTS OF THE IN

Theorem 2: For thresholds r a=N2-4N + external coupling, the only stationary

points of the IN are the Hadamard points.

STABILITY
Theorem 3: Any stable point of the DLS must either lie in the region yl 1 l/2 or in

the corners of the solid hypercube.

Theorem 4: For a DLS with threshold bound of N2 /4 there is a stationary point in
every Hadamard corner.
Theorem 5: The stationary point of Theorem 4 is stable.

ENERGY LANDSCAPE
Theorem 6: For zero thresholds, the origin in signal space is stable.
Theorem 7: For zero thresholds, the stationary states in the proportional region, and
away from the origin, are unstable.
Theorem 8: The ridge set has principal spectra.
Theorem 9: For zero thresholds, the stationary points of the energy function
constraint to a hypersphere, in the proportional region, have *principal spectra.

DECOMPOSITION INTO LONGITUDINAL AND TRANSVERSE DYNAMICS
ADIABATIC FAKE DYNAMICS
Theorem 10: Through every stationary point of the true DLS dynamics goes a
transverse adiabatic path, along which, in the proportional region, the transverse
force vanishes.
Theorem 11: For zero threshold, the transverse equilibria in the proportional region
have kprincipal spectra.
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CONSERVATION OF PRINCIPAL SPECTRA
Theoreml2: For a DLS for which the thresholds have a principal spectrum, the
signal spectrum is conserved in the proportional region.

SPURIOUS STATES SHIELD SPOILS EARLY DYNAMICS
DYNAMICS IN THE PROPORTIONAL REGION
SPECTRAL PURIFICATION IN THE PROPORTIONAL REGION

Theorem 13: For a DLS externally coupled to a BLT by ra=u(ua+N 2'ad' and with

coupling constant As=1/(4g 2N2 ), the dominance ratio can be made arbitrarily large
by taking either the gain or the dimension large enough.

FINAL PURIFICATION
Theorem 14: For a DLS with coupling and gain as in Theorem 13, and with
activations reset to zero at the time of application of the BLT output u, the signal y
settles at the dominant Hadamard vector in u, if the gain is large enough.

NUMERICAL COMPUTATIONS
CONCLUSION

INTRODUCTION

The main problems of concern in associative memories are early saturation, fault
sensitivity, and hardware implementation. Hopfield memories 1] are robust, but suffer
from early saturation. The latter problem is solved by ART [21, but at the cost of fault
sensitivity of the upper layer. Early saturation can also be circumvented by employing
vectors with dilute information [3], but this approach is wasteful of memory dimension.
The use of connection matrices that are more sophisticated than the Hopfield matrix [1]
also may solve this problem [4,5], but at a loss of locality of the learning rule, with
unacceptable consequences for hardware implementations in applications with large
dimension. The use of Coulomb like activations [6] makes it possible to load up associative
memories to great density, but it forces the individual neurons to be rather complicated,
with undesirable consequences for hardware implementations. Making memories
bidirectional [7] does not give relief of early saturation [8].

In Phase I of the present DARPA SBIR project we outlined a new approach to
associative memories which appears to have the potential of overcoming the early
saturation problem, while retaining fault tolerance. The approach involves a two-stage
memory, shown schematically in Fig. 1.

In Phase II of the project, a promising architecture for the rear stage was identified
and investigated. The device is an associative memory with Hadamard vectors as stored
states, and with the activation taken as a quadratic function of the incoming neuron
signals, instead of the customary linear function. Using a quadratic activation of course
carries a penalty in hardware implementation, and it may lead to proliferation of the
number of connections. The latter is not found to be a problem, as the number of
connections required is about the same as for a fully connected Hopfield memory. The
hardware complication due to quadratic activations appears to be rather mild as compared
to that due to Coulomb like activations.

The resulting "Quadratic Hadamard Memory" was investigated with the
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asynchronous discrete model, as discussed in an earlier report [9]. In the present report the
investigation is extended to the continuous model.

The associative memory considered (see Fig. 1) consists of a bidirectional front stage
which is capable of a forward stroke and a backstroke, both of which are linear
transformations. We call this frontstage a "Bidirectional Linear Transformer" (BLT). In its
forward stroke, the BLT transforms the N dimensional bipolar input vector x into a vector
u with integer components in the range [-N,N]. The BLT is arranged such that its rear
output u is a linear combination of orthonormal labels of the stored states. The vector u is
presented to the rear stage, called "Dominant Label Selector" (DLS). This device is to
select the dominant label from the linear combination u. The labels are here chosen as
Hadamard vectors. The settled DLS output y is to be the Hadamard vector closest to u.
The vector y is returned to the BLT and processed in a backstroke, which produces from
the label y the stored state to which it belongs. If everything works as expected, that stored
state is th,! one closest to the input x. The whole device, BLT plus DLS, is called "Selective
Reflexive Memory" (SRM), where "selective" indicates the selection of the dominant
Hadamard vector by the DLS, and "reflexive" alludes to the bidirectional nature of the
BLT. The BLT may be seen as a BAM [7] without rear thresholding. Front thresholding is
optional. The SRM may be likened to an ART, in which the winner-take-all circuit in the
top layer is replaced by a DLS. Since the DLS is a distributed winner-take-all, its use is
expected to overcome the fault sensitivity of the ART top layer.

Conventions and notations are the much the same as in [9]. The input and output of
a neuron threshold function are respectively called "activation" and "signal" of the neuron.
The summation convention of tensor calculus has been used where convenient. In order to
distinguish from unsummed expressions, we have used the convention in its strict form
[10]: in a product, summation over a repeated index is implied only if the index appears

twice, once as a subscript, and once as a superscript. For instance, uava is summed, but
Uav a is not.

Indices are used as follows. i, j, and k denote components in input space. a, b, c, d,
and p denote components in the space between the BLT and DLS, and also components of
the DLS state vectors, a, Pl, and y are used to name stored vectors and their labels, the
Hadamard vectors. All indices range from 1 to N. A statement involving unspecified "life"
indices [10] is meant to be true for all values 1 to N for such indices.

The Kronecker delta is written as 6 with two indices. If the indices have the same
value, the symbol stands for unity, else it stands for zero.

Indices are raised and lowered with the Kronecker delta as metric tens.,r. Hence, va
and v a have the same numerical value.

As a further simplification of appearance, 1 is often written as + and -1 as -, when
no confusion with composition symbols can arise.

Customary mathematical shorthand is used where converdent: c means "is an
element of", V means "for all", 3 means "there exists", ==> means "implies", and <==
means "is implied by".

In the continuous model of the DLS, the signals y lie either in the closed solid
hypercube JN = [-I'I]N , or in the open solid hypercube JN (-I)N , depending on
whether or not the sigmoidal neuron output function s(v) attains the values *1. In the
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former case, the signals y can settle at one of the corner points of the hypercube, defined as

the set IN = f{ 1,1 }N. The IN is the set of signals considered in the discrete model.

SELECTIVE REFLEXIVE MEMORY

The Selective Reflexive Memory (SRM) consists of two stages. The front stage is a
Bidirectional Linear Transformer (BLT) which in its forward stroke performs on the
bipolar input vector x the linear transformation

Ub=Bb i xi ,
The connection matrix of the BLT is chosen as

Bb 1= hb a , (2)

where qa) a= 1 to N, are the stored bipolar vectors, and the ha are Hadamard vectors. We

have chosen the same dimension N for the BLT front and rear vector spaces, and have
taken the number of stored states equal to N as well. It will be clear from the theory how
to modify these choices if desired. The structure (2) of the BLT connection matrix is
Hebbian, i.e., it can be built up adaptively by Hebb learning.

The Hadamard vectors ha are rows of a Hadamard matrix, i.e., an orthogonal

matrix (up to a scalar factor) with entries + and -. Properties of Hadamard vectors used
in this report are shown in Appendix A. The Hadamard vector ha serves as a label for the

stored state q .

With the connection matrix (2), Eq. (1) gives for the rear output of the BLT

ub =h baqaix, = cahab (3)

where ca = x.qa (4)

is the scalar product of the vectors x and qa, If qP is the stored vector closest to the input

x, then cfi is the largest among the coefficients ca* Suppose that behind the BLT there is a

stage which selects, from the linear combination c ahab, the dominant Hadamard vector

h. Such a device is here called a "Dominant Label Selector (DLS). We postpone discussion
of the DLS, and consider the processing of the DLS output y, for now assumed to be the

dominant Hadamard vector hP. As depicted schematically in Fig. 1, the DLS output y is
returned to the BLT, to be used in a backstroke

wi=ybb i . (5)
With y = h and and the connection matrix (2), (5) gives as result of the BLT backstroke

wi=h 0bhbaqii =N 6baq =N q0' (6)

where use has been made of the orthonormality of the Hadamard vectors, expressed by
(A2) in Appendix A. If w is thresholded with the signum function s we get

0
=s 0 (w1) = q , (7)

which is the stored vector that is closest to the input x. Hence, if the DLS would work as
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required, the SRM would perform perfect associative recall of anyone of N stored vectors.
There would not be any spurious stable states.

There is the option of deleting the thresholding in front of the BLT. Then, no BLT
neurons are needed; the BLT is just a "bidirectional connection box". Also, there is the
option of using an analog input for x. Finally, there is the option of using the result of the
BLT backstroke to upgrade the SRM input, or just as the output of the SRM.

The DLS has the task to select, from the linear combination ub = Ca hob, the

Hadamard vector hl b which occurs with the largest coefficient, i.e., c, is largest among the

Ca, a=l to N. But this means that h is the Hadamard vector with the largest scalar
product u.ha * Therefore, the DLS itself may be considered an associative memory with

stored states h a % a=1 to N. In those terms the DLS is to produce, from the input u, the

closests stored state, h .

DOMINANT LABEL SELECTOR (DLS)

The DLS, considered as an associative memory with stored states taken as the
Hadamard vectors h., must find the Hadamard vector nearest to the BLT output u. A

Hopfield memory [1] cannot be used here, because it would saturate long before all the N
states are stored. Furthermore there is a problem due to orthonormality of the stored states
[9]. Instead, we have chosen for the DLS an associative memory with quadratic activation.
This memory, called "Quadratic Hadamard Memory", has been investigated in [9] by
means of the asynchronous discrete model, in which the activation is given by

va = S abcyby + ra , (8)

and the signal y a is determined by thresholding va with the signum function. The last term
r a may be either seen as an external coupling, or as defining thresholds. The connection

tensor Sabc is restricted to be fully symmetric.

The quadratic activation expressed by (8) constitutes a case of "higher-order
neurons [11]. Properties of quadratic activations have recently been discussed by Volper
and Hampson [12].

Stability of the DLS in the asynchronous discrete model is assured [11] if all
connection tensor components with at least two equal indices are zero,

Sapp = 0, for all a and p. (9)

It has been shown in [91 that the Hadamard states ha, a=l to N, are stable in the

asynchronous discrete model if the connection tensor is chosen as

Sabc =  haahabh ac-N ab 6cl-N 6 bc 6al-N ca6 bl +2N 6al'bl1cl .  (10)

and if, moreover, we take
ra= r for all indices a. (11)
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and 0 < r < N2-2N. (12)

The form of the connection tensor (10) is similar to the Hopfield matrix [1], making
allowance for the quadratic nature of the internal coupling. The last four terms in (10)
have been added to satisfy condition (9), while retaining full symmetry. To check that the
subtraction works one needs the property (A4) of the Hadamard vectors used.

it further has been shown in [9] that in the asynchronous discrete model no spurious
stable states exist if one takes (10) and (11), and if (12) is sharpened to

N2-6N < r < N2-2N . (13)

In addition to the system with the subtracted connection matrix (10), we considered
in [9] an alternate system, in which the connection matrix is simply taken as

Sabc- G haahabhac ,  (14)

without any subtractions. In the asynchronous discrete model this DLS has been found [9]
to also have the properties mentioned above. Although this system has a simpler expression
for the connection matrix, it has a somewhat larger number of physical connections,
because (9) does not hold.

CONTINUOUS MODEL FOR. DLS

The main problem remaining after the discrete model investigation [9] was the
question of coupling of the BLT output ua to the DLS, taken as a quadratic Hadamard
memory. The discrete model cannot properly account for such coupling, and this is the
main reason for extending the investigation to the continuous model. The DLS dynamics is
then described by equations of motion for the activation va of neuron a,

a -Va + Sabc b + ra (15)

The dot denotes a time derivative, and the output signal y a of neuron a is given in terms of

the activation va by
Ya = s(va) , (16)

where s(v) is a soft sigmoid function which either attains the values +1, or approaches

these values asymptotically. The function is chosen antisymmetric and such that

s'(v) ? 0 for all v , (17)

where the prime denotes the derivative.

We need to discuss the coefficients of terms in (15). In electronic implementations,
the first two terms represent the lumped effects of amplifier input capacitance and

resistance. This may be expressed more clearly by writing the terms as C a and -va/R.

But C and R can be brought to unity by scaling of the time and the activation, together
with a related adjustment of the sigmoid function s. Hence, putting C and R to unity does
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not constitute a physical restriction. We will proceed with the DLS dynamics in the
normalized form (15).

The connection tensor Sabc in the equations of motion needs to be specified. Two
choices will be considered: the subtracted tensor (10) and the unsubtracted tensor (14). In
the asynchronous discrete model these two connection tensors give about the same results
[9]. In the sequel we will sometimes choose the subtracted form, and sometimes the
subtracted tensor, as determined by opportunities for theory development or clarification.
There also are results which hold for any symmetric connection tensor, and they will of
course be derived without having the tensor specified.

Because in the continuous model the set of signal states is the closed or open solid
NNhypercube JN = [-1,1] or JN= (-1, 1 )N, there are many more possibilities for stationary

states than in the discrete model, where the signals are constraint to lie at the corner
points of the solid hypercube. Hence, the investigation of stationary and stable points of
the continuous DLS involves a lot more territory. In addition, there is the question of
where the DLS state will eventually settle, if started out at a suitable initial state. The
nonlinearities in the DLS dynamics make it difficult to integrate the equations of motion.
Our challenge is to get the required information without having to do the integration.

NEURON OUTPUT FUNCTIONS
Two convenient choices have been made for the neuron output function s(v). The

first is the hyperbolic tangent,

s(v) = tanh(gv) , (18)

where g is the gain at zero. Since the asymptotic values ±1 are not attained, the set of
signals is here the open solid hypercube JN = (-1,1)N

The other output function used in this report is the piecewise linear function

s(v)= -1 if v< -1/g
-gv if jvl f1/g, (19)
-1 if v>l/g.

This function attains the values ±1, so that the set of signals is the closed solid hypercube

JN = [-1 11N" In analytical work one has to watch the discontinuity in the derivative at
v=+l/g. Moreover, if any of the acitivations va exceeds 1/g in magnitude, then the state
cannot be described unambiguously by the signal y, and one must use the activation v.
Either sigmoid function has its advantages and disadvantages, and we will use one or the
other, as convenient. Although one must be careful not to claim more than is proved, we
expect the results derived to remain valid for other similar choices of output function. In
the numerical computations performed, no difference was noticed when one function was
used or the other, as long as the gains g were taken the same. Properties and consequences
of the two output functions are shown in Appendix C.
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THE ENERGY

For a fully symmetric connection tensor Sabc, the activation velocity vector i is curl
free in the space of signal vectors y (but not in the space of activations; see Appendix B).
Hence, the integral

E a d y a (20)

does not depend on which path is taken from the origin to the point y. E is a Liapunov
function since

P =- ( a)2 s'(Va) (21)

is nonpositive, by (17). From (20) one finds

E(y) = -Sabyaybyc - raya+ , (22).

where
= ( (v a)  (23)

and
v

((v)= s,() d . (24)

Although o is defined in (24) as a function of v, the term Q2 in (22) is taken as a function of
Ya' by application of the inverse of the mapping y=s(v). The inverse mapping is unique if
condition (17) is replaced by

s'(v) > 0, for all v . (25)

Since the energy E of (22) is bounded, and t is nonpositive, we have

Theorem 1: The continuous DLS subject to the conditions posed is stable.

SPECIFIC FORMS FOR EQUATIONS OF MOTION AND ENERGY

For the subtracted connection tensor(10) we have from (15) the equations of motion

va = -va+ N hay a2-2NYaYl-Nybyba1+2NY126a1+ ra. (26)
where

ya= (1/VN)haa y  (27)

is the Hadamard transform of ya' The factor 1/N is applied in order to preserve norms. In
(26), yl is the component ya for a=1, not the component ya for a=1.

It is sometimes convenient to see separately the components for a=1 and for a#1:
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v= -V1 + rI , (28)

and
a#1, va= -va + N haya2 2Nyay+ra; (29)

use has been made of (A6) and (A9). The energy is

E = - (N 3  ya 3-3Nya yay I +2NY13) -ray +fl, (30)

where Q is given by (23) and (24). If the neuron output function is a hyperbolic tangent as
given by (13), then one has for f1

= Ig {(l+Ya) ln(l+Ya)+(1-Ya) ln(-Ya)} , (31)

as derived in Appendix C. If the output function is taken as the piecewise linear function
(19), then

Q= R2 /(2g) ,for Iya<1, (32)
where R is the Euclidean norm of y,

R2 = yay a  (33)

For the unsubtracted connection tensor (14) the equations of motion are
va = -Va+ N 2 hay a +r a . (34)

which split into
{,i= -Vl+ N ya + rI  (35)

and

a#1, a=-V a + N ; h aaya 2 + r
a  (36)

where, again, (A6) and (A9) have been used. The energy is then

3 3Y a a (37)

For subtracted dynamics, the a=1 equation of motion (28) is uncoupled from the
rest. The solution is simply

vI = rI + ce-t , (38)

where c is a constant. Since all Hadamard vectors used here have + as first component, and
we want a Hadamard vector as DLS output, things must be arranged such that Yl
approaches unity for large times, which means that the activation vI must also be positive.
It follows that we must require

rI > 0. (39)
For unsubtracted dynamics, the a=1 equation of motion is given by (35). Now there

is coupling to the scalar R2 of (33). The condition (39) then assures that vI does not
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temporarily turn negative, which would slow the settling of the DLS.

For subtracted dynamics there is the option of omitting neuron #1 altogether, and
clamping the yl signal line to yl = + permanently. There is no need for connections from

the yl line to the other neurons. We will refer to this arrangement as the yl clamping

arrangement. This amounts to putting

Yl = + ' ,(40)

which gives the - 2 NyaY1 term in (29) the value -2Ny a . The first component, u1, of the

BLT output ua is ignored. That this can be done without penalty is related to thte +.ct that

the Hadamard vectors used all have first component +. The yl clamping speeds up the

DLS action, as can be seen by monitoring numerical computations.

For unsubtracted dynamics, the coupling term N yaya in (35) is always positive,

and it tends to N2 or a nearby value for large times. The value of r, needs to be chosen

such that yl tends to +1 for large times. The yl clamping scheme may be used also for the

DLS with unsubtracted dynamics.

COUPLING SCHEMES

The BLT output u must be coupled to the DLS. We see two ways of doing this. In
the external coupling scheme the vector r in the equations of motion is chosen as

ra= J(Ua +cNa,) , (41)

where A>O is a coupling constant, and N is the dimension. For a=1 the Kronecker 6al is

unity, else zero. The term CNbal applies a threshold -xN solely to the first neuron. This

threshold has been written into r for later convenience, and the constant c will be chosen in
due time. The external coupling scheme also requires a reset of the DLS activation to zero,
everytime a new BLT output u is applied. In the theory, such time is chosen as t=0, and
the reset then fixes an initial value for the activation vector v(t):

va(0)0 , V a . (42)

For small times the quadratic term in the equations of motion (15) is negligible
compared to ra, so that we have

t<<l , va=-va+ ra , (43)

with ra given by (41). With the initial value (42) we have the integral

t<<X, v a= JL(U a+CNbalx)(1-e -t ) , (43)

which shows that the activation exponentially approaches p(ua+cN a1 ) . The e folding

time is unity here, because the RC time is unity, by the scaling that has thrown the
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equations of motion into the normalized form (15).

The second choice is the initial value coupling, for which the vector r is chosen as

ra=cSal, (44)

with c some constant to be determined, and the BLT output is applied as initial activation,
after multiplication by the coupling constant jL,

v a(O)=/u a . (45)
For small times we now have the integral

t<<l , v a=cNb al (1--e-t ) + U a e -t (46)

The activation components now approach the value cN6 al and the contribution of the

applied BLT output u in the activation dies out.

Comparing the two coupling schemes, the external coupling appears to have the
practical advantage that the DLS input and output are separate. The BLT output vector u
remains standing on the DLS external input, while on the output the DLS state y appears
as it is developing in time. The output y is processed by the BLT in its backstroke, with
the result x' appearing at the front of the BLT. The separation of the DLS input and
output is particularly convenient for the setup in which the BLT front output x' is not
used to upgrade the input x, but is considered as the output of the whole machine.

DYNAMIC REGIONS

It is helpful to distinguish regions in signal space which have essentially different
dynamics. These regions do not have sharp boundaries, but blend smoothly into each other.
In discussing these regions, we prefer to use simple albeit imprecise language rather than
cumbersome precision.

In the proportional region of signal space the s' (va) is constant, either precisely or
approximately. This region includes the origin, and it may have considerable extent,
depending on the neuron output function s(v) used. For the piecewise linear function (19)
the proportional region in signal space is given by -l<yay<l.

In the proportional region ya= gva, where g is the constant gain in the region, and

the equations of motion (15) may be written

ia = - Ya + gSabcy y + gra' (47)

For unsubtracted dynamics the equations of motion (47) can be decoupled by means of a
Hadamard transform; with (14) one finds

= a + Nya + r a(48)

where ya is the Hadamard transform (27) of ya and ra is the Hadamard transform of r a*
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For subtracted dynamics one finds with (10)

1 i = _ y + yN3  2 -2N yay) -4N yoyo +2vN y12 h+ r (49)

g ~a = a~ a a~al l a

where (A6) has been used. In (49) and throughout this report, yl stands for Ya with a=1. If

Yl clamping is used, y1 =1 is to be substituted in (49). Even then, the equations of motion

are not entirely uncoupled, because of the term with

y y 0 = R2 . (50)

Note that the norms given by (50) and (33) are equal, because of the orthogonality of the
Hadamard Transform.

The neuron output function s(v) is restricted to be of the sigmoid type. For
estimation purposes it is convenient to introduce a value v*, which we call the critical
activation, such that

for Ivi > v*, ls(v)I _ 1-c= y*, (51)

where e is a positive number much smaller than unity, such as e = 0.01 . Condition (17) or
(25) and the antisymmetry of s(v) imply

for lvi > v*, s'(v) _ s'(v*). (52)

We call an activation va subcritical if IvaI < v*, and supercritical if I val ? v*. For

a supercritical activation va, the resulting signal Ya may be taken as +1, determined by the
sign of va, as a suitable approximation in certain mathematical expressions. If (25) is true,

sub- and supercriticallity also can be stated in signal space: a signal ya is subcritical if

I ya I < y*, and supercritical if Iyal _> y*. Hence, in discussing sub- and supercriticallity,

we then need not say whether the state is considered in activation space or signal space.

Since the state vector v has N components, some components may be supercritical,
while others may be subcritical. Hence we distinguish states that are entirely subcritical,
partially supercritical, and entirely supercritical. A supercritical activation not only
produces a signal that may be approximated as +1, but also gives a derivative s' smaller

than s, (v*), by (52). Which if any of these two properties of supercriticallity is used is a
matter of convenience.

When the state is entirely supercritical, the point y lies at or close to a corner point
of the solid hypercube. The point set {y1 y*< I ya I1}, with a suitable y* is called a corner.

If a Hadamard point is included, we call the set a Hadamard corner.

STATIONARY POINTS OF THE IN

It is a simple matter to determine whether a given point y is stationary. All one
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needs to do is calculate v from the equations of motion (26) or (34), and see whether the
activation velocity v is zero. Alternatively, one can see whether at y the energy E has a
zero gradient,

aE = 0 , (53)

where aa stands for /0y a .

As will be shown, thresholds can be chosen such that the Hadamard points are
stationary. The question is whether there are other stationary Toints. To investigate this in
the continuous model we use a method suggested by the study 9] of the asynchronous
discrete model. We begin by considering the vector

qa = N ; haaYa2= ; haahabhacybyc , (54)

in the equation of motion (29) for the case with the subtracted connection tensor (10);
a#1, va = - Va + Qa - 2 NyaYl + ra ' (55)

We choose the piecewise linear output function given by (19 .ie gain must be chosen
large enough so that some stationary points belong to IN ' Tie vector Qa can be rewritten
with two Hadamard factors by using the group property of Hadamard vectors, (see
Appendix A)

h aah ab=h ad (56)
where d=f(a,b) ; (57)
this allows rewriting (54) as

Qa=  ,c hadhacYbYc" (58)

Using the group property once more,

h adhac=h ae (59)
where

e~f~dc) ;(60)
throws (58) in the form e=f(dc)

With (A4), (61) may be written Q c h ybyc* (61)

Qa = N ,c Iel ybyc. (62)

In order to contribute to the sum, the term 6elybyc must have e=1; with (60) and (A17)
this means that d=c . With (57) and (A22) this implies that

a=f(b,c) . (63)Hence, (62) may be written
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Qa = N ybyC (64)
(bC)E'a

where a is the set of index pairs

Ra=(b,c) I f(b,c)=a} . (65)

We restrict to signals that lie on cornerpoints of the solid hypercube, i.e., yCIN.

As further preparation, we state here as Lemma 1 the Theorem 2 of [9]; for
convenience, the proof [9] is repeated in Appendix D.

Lemma 1: ycIN, Qb=-N 2 , V b such that yb= -  <==> y is Hadamard j h1 .

We are now prepared to show

Lemma 2: y EIN, not Hadamard ==> 3 index b such that yb = - and Qb - -N 2+4N .

Proof: Let y E IN and not Hadamard. This implies that y is not hl, so that the set

A = {bi Yb= - } is not empty. Choose an index b such that yb = - and Qb# -N 2 ; this is
always possible, since otherwise Lemma 1 would imply that y is Hadamard J h1 , which is

false. We use the expression (64) for Q a' There are N terms in the sum, since for every
b=1 to N the remaining index c is determined by the condition that the pair (b,c) lies in

the set R a * Since y EIN, all terms ybyc are either 1 or -1. The terms cannot all be -, since

Qa#-N 2 . Hence, the sum contains at least one + term. Say, that term is yPyq. But then,

the term yqyP is + as well. It follows that the sum (64) contains at least two + terms.
Since flipping the sign of a single term from - to + causes the sum to change by 2, we have

Qa - - N 2 +4 N. J

Lemma 2 has an important application to the equations of motion (55), with the
threshold term chosen as

a#1, ra= (N 2- 4N)hla+ua ,  (66)

where h1 is the Hadamard vector with all components +, ua is the output of the BLT, and

p> 0 is a coupling constant. With (66), the BLT is coupled to the DLS by applying the
BLT output as an external coupling to the DLS. It is convenient to put a bound on the
coupling constant,

at 1, #U a I < 2N-1 /g (67)

and restrict the gain g by

1 (68)
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Moreover we take from here on N>4. (69)
We have

Theorem 2: For a continuous DLS with subtracted connection tensor (10), a piecewise
linear output function, thresholds subject to (66) and (67), and a gain subject to (68), the
only stationary points of IN are the Hadamard points.

Proof: First we show that the Hadamard points are stationary. For a Hadamard point
y = h one has

Qa=N2h a, (70)

and the equation of motion (55) with thresholds given by (66) reads

a#1, va= -va + N2hya -2Nhya +N 2 --4N +zua . (71)
where yl=+ has been substituted.

For indices a such that hya= - the N2 terms cancel, and (71) gives

a+Va= -2N + ua < -1/g, (72)

while for the remaining indices a#l we have

,a+va= 2N2-6N +izua > 1/g; (73)

conditions (67), (68), and (69) have been used. (72) shows 3 va < -1/g such that a = 0;

the inequality va < -1/g is consistent with ya= -1. (73) shows 3 va>l/g such that ,a=0;
va>1/g is consistent with ya= 1. The a=1 equation of motion (28),

v1 =-Vl + r1  (74)
shows no coupling with other neurons, and can either be implemented as is, with r1 >0 , or
may be cast aside in favor of yl clamping, as discussed before.

It follows that the Hadamard point y = h is stationary. To show that there are no
other stationary points, consider a point y of the IN that is not Hadamard. By Lemma 2

there exists an index b such that yb= - and Qb> -N2 +4N. For such an index, the equation

of motion (55) gives
vb + vb= Qb+ 2N + N2 -4N +Aub > 2N+ub> 0. (75)

The point cannot be stationary because of a conflict in signs of vb and Yb j

Condition (69) does not constitute a restriction in practical applications. The gain
conditions (68) is satisfied in practice because we want large gains in order that the DLS
settles fast. With (69), condition (67) is satisfied if
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(76)
because

lual < N (77)
as follows from (3), c a=x.qa, and the bipolar nature of the vectors x and qa, Condition
(76) is convenient in practice, since it implies that no amplification is needed between the
BLT rear output and the DLS input.

STABILITY

The stability of stationary points can be investigated either with the energy or with
the equations of motion.

Writing aa for aOy a , we have for unsubtracted dynamics, from (37)

OaE = Va - N ; h aaya r a ) (78)
and

ObaaE = 'ba/S'(vb)-2 vN ; haahabYc, (79)

Since away from stable points t of (21) is negative definite, the stationary point y is
asymptotically stable iff the tensor 19b eaE at y is positive definite. The point is unstable iff
the tensor has a negative eigenvalue. It is difficult to use these conditions because of the
involvement of the Hadamard matrices in the tensor (79). But, if we are willing to give up
some bound sharpness, a very simple condition can be stated in terms of the tensor trace; if
it is negative, then there must be a negative eigenvalue. Hence e9a E < 0 implies that the
stationary point is unstable. With (79), (A2), and (A4) it follows after a short calculation
that

(1/s'(va)) -2N 2yl < 0 ==> y is unstable. (80)

This sufficient condition for instability only involves yl and the sum of the
reciprocal sigmoid derivatives s' for the neurons. Since s' is nonnegative by (17) or (25),
cancellations cannot occur in the sum over a. Therefore, satisfaction of the condition
requires that none of the derivatives s' (va) be small. Roughly, this means that the state
must be entirely subcritical in order that instability can be concluded from (80).

With about the same effort a much sharper sufficient condition for instability can be
derived from the equations of motion. These may be seen as expressing the flow velocity v
in activation space. The flow divergence is related to instability, as will be shown
presently.

Writing 9a for 0 0 va, we have from (34)

b 'a =-'ba + 2N ; haa yahab s'(vb) (81)

At a stationary point v the velocity v a vanishes. The velocity at a point 6v away from v is
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given by bv v a. The question is whether the radial component of this velocity is pointing

bb
away from the point v or towards it. If the former is the case for some vector b, the point

v is unstable; if the latter occurs for every vector 6vb , then the point is stable. The sign of
the radial component of the vector b a is given by the sign of the scalar product
ba 6 vbba. It follows that v is unstable if the tensor 8a b+ 8b0a has a positive

eigenvalue. This is the case if the trace is positive. That trace is the flow divergence

aa =-N + 2 Ny 1 i s'(Va). (82)
We have

,a ,a > 0 ==> v is unstable, (83)

and with (82) the condition reads

1 - 2y1 N s'(va) < 0 ==> v is unstable. (84)

As in (80), the condition involves only yl and the derivatives s'. However, (84) is
much sharper than (80): all that is required for the satisfaction of the inequality is that for
a singLe neuron the sigmoid derivative s' is sizeable. Roughly, this means that partially or
entirely subcritical stationary states are unstable. A further advantage of the condition

2(84) over (80) is the absence of the factor N , which is very large for the large dimensions
expected to be important in practice.

We proceed with application of (84) to the case that the neuron output function is
taken as the hyperbolic tangent (18). Then we have from the Appendix, (C3),

s'(Va) = g(1-s 2 (va)) = g(1-ya2) (85)
The condition (84) then reads

1-2gy1 i (1-ya ) < 0 ==> y is unstable. (86)

For partially or entirely subcritical signals y
3 b such that [yb[ < y* (87)

where
y *=s(v*) ,(88)

and v* is a suitably chosen critical activation. The inequality in (86) is satisfied if

0<77<1, 2g77(1-y* 2 ) > 1, yl> 77, and (87) is true;

Since for 0<<1 and y*=1-f we have l-y*2 > c, it follows that for partially or entirely
subcritical signals

2gt7E>l, yl>77, [yal<y* ==> yis unstable. (89)

The number 17 may be chosen freely, as long as 0<n7<1 . A convenient choice is
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= 1/2; (90)

then, the condition 2g77c>1 in (89) becomes

E>1/g. (91)
Hence, we have

Theorem 3: For a DLS with unsubtracted dynamics and a hyperbolic tangent output
function with gain g, any stable point must lie either in the region yl 1 l/2, or in the
entirely supercritical region with criticallity parameter E>l/g.

As will be shown later, the only stable point in the region yl 1 /2 is at or near the
origin, and it can be eliminated by proper choice of coupling constant A.. By Theorem 3, the
remaining stable points must lie in the corners of the solid hypercube with positive yl. Of
course, the Hadamard corners are of special interest; we want to know whether they
contain a stable point. Theorem 2 states that Hadamard points are stationary if certain
conditions are satisfied, which includes the threshold condition (66). But it turns out that
the large magnitude of the threshold in (66) spoils the early dynamics, and therefore we
will need to diminish the threshold below the value given by (66). In preparation, we must
find a range of thresholds that straddles the origin, and which assures that every Hadamard
corner contains a stable point. The first step is to find a threshold range such that every
Hadamard corner contains a stationary point. We proceed as follows.

For subtracted dynamics we have the equations of motion (29)

aa, a= -v a + N ; hcaya 2 - 2 NyaY1 + ra (92)

We wish to find bounds on the threshold such that the Hadamard points are stationary. If
we use the hyperbolic tangent output function (18), the Hadamard points are not
attainable; we then consider the signal

ya=(1-fa a)~,(3

where
0<(a<.02 , V a. (94)

The value .02 has been chosen for convenience in a manner that need not be discussed here.
For this signal the equation of motion (92) gives

a#l, ,a = -va +N 2 (1-fa)2 h7a - 2 N(l-ca)h a(1-fl) +ra. (95)

We investigate whether the signal can be stationary. Putting Va = 0 gives

aj1, va = N(1-a)(N(1-ea)-2(i-cl))hya + r . (96)

If IraI<N2/4 , (97)

then the sign of v as determined by (96) is the same as the sign of Ya given by (93), since

S(1- a)(N( 1-a)-2(1- 1))-N2 /4 >0 (98)

for all Ea subject to (94). It remains to calculate easuch that the signal y given by (93) is



20

entirely supercritical, with criticallity parameter fa' For ra subject to (97), Eq. (96) implies

a#i, I a I >N(1-fa)(N(1-ca)-2)-N 2 /4 , (99)

provided that ca has been chosen such that

fa<c , V a. (100)

Let g* be determined such that
N(1-c)(N(1-f)-2)-N 2/4 =  .In(21. (101

(99) can then be written

ai1, Ival > T *ln(2/c) > y- ln(2/f) , (102)
for all gains g such that a(

g>g* . (103)

By (C6) we have

1 ln(2/f) > v*, (104)
where v* is the critical activation belonging to c, as defined by (C4). It follows that (102)
implies

a#l, Ival > v*. (105)
For a=l we have (28) , and at the stationary point the activation v1 can be made as large

as desired by choosing r 1 large enough. Alternatively, one can use the yl clamping scheme

and put yl=+. Together with (105) and (100) it follows that the state (93) is entirely

supercritical.

The bound (97) is sloppy, but very generous for practical applications. We must see
whether the gains g subject to (103) and (101) have practical values. For N subject to (69)
it was found that

.02<c .001 , g* < 1. (106)

Since we want large gains for fast DLS settling, the condition (103) does not constitute a
limitation in practice.

It follows that a DLS with subtracted dynamics and hyperbolic tangent output

function has a stationary point in every Hadamard corner, provided that (97) is satisfied.

For unsubtracted dynamics the argument is much the same. The term - 2 NyaY1 is

then missing from (92), so that instead of (96) we have

va = N2 (1-a)2h7a + ra (107)

In this case, we need only invoke (101); the same bouna (97) then assures the existence of
stationary point in every Hadamard corner, for a DLS with unsubtracted dynamics.

It is easy to see that the conclusions remain valid if the hyperbolic tangent output
function is replaced by the piecewise linear function given by (19), for both dynamics
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considered. Of course, since the outputs A1 are attainable, the stationary point in a
Hadamard corner lies precisely at the Hadamard point.

We have shown

Theorem 4: For a DLS with either subtracted or unsubtracted dynamics, with the output
function taken either as a hyperbolic tangent or as a piecewise linear function, there exists
a stationary point in every Hadamard corner, if the bound (97) on thresholds is satisfied,
and the gain is at least the g* determined from (101).

Next, we investigate the stability of these stationary points in Hadamard corners.
From (79) we have

62E= bya 2/s'(va) - 2,N 3  6y 2y , (108)

where AE= yb6yaObOaE is the second variation of the energy due to a displacement 6y
(the first variation vanishes since y is stationary).

For the hyperbolic tangent output function (18) one has (see Appendix, (C3))

s'(va) = g(1--s2 (va)) = g(1-ya2) , (109)

and (108) becomes
2E = 6ya2 /(1-Ya 2 ) - 2N 3  bya 2ya. (110)

Let the index b be such that jvb1 is smallest among the IVal . Then yb 2 is smallest among

the ya 2 , and we have

i/l--ya2 _ 1/(l-yb22), Va. (211)

Hence, from (110) we have

>2 E b 6y.6y/(1-yb 2 ) -21N 3 ; 6ya 2 y . (112)

The smallest rhs occurs when ; 6y2 ya is maximum, while 6y is constraint to have fixed

norm. In this regard we have

Lemma 3: Let there be an index # such that Y#>Ya I V a#of. For Ua subject to Ua Ua=1,

the maximum of X= U a 2y a then occurs at Uab /3

Proof: The stationary points of X, subject to

UaUa =1 (113)

are found from the stationary points of F=X+A(UaUa-1) , where A is a Lagrangian

multiplier. One has
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0=aF/oUa=2Uaya -2U. (114)

A is found by multiplication by U , summing over a, and using (113); the result is

A=X. (115)
Substitution in (114) gives 0=Va(ya -X), (116)

which implies either U,=O , or y,=X 
(117)

It follows that X is maximum for

u , a(118)

where P is the index such that yo>y, , V c4o. J

For a stationary point in a Hadamard corner of the Hadamard vector h the

maximum component ya is yf. Application of Lemma 3 then gives for the maximum of

the term 2v/N3 ; bya 2 ya in (112), with by subject to a fixed norm, the value

2VN 3 by.gy y8 < 2N 2 by-.y. (119)

Hence, (112) implies

PE > by.y (1/(1-yb 2 )-2N2 ). (120)

The rhs is positive if

1/(1-yb 2 ) > 2N 2 . (121)

For ease of reference we state the result,

Lemma 4: For a DLS with unsubtracted dynamics the stationary points in Hadamard
corners are stable if (121) is satisfied.

We must find a convenient inequality which implies (121). For the hyperbolic
tangent output function y=s(v) of (18) we have

i1/(1-y 2)=cosh 2(gv) = (egv+ e- gv)2 /4  (122)

hence, (121) is satisfied if
egl~ I > 2N4/ . (123)

where v is the activation with the smallest magnitude. (123) is equivalent to

lv I ln(2Nv2). (124)

The equilibrium equations of motion (96) may be used to find a condition on r a that
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implies (124). From (96) we have for the minimum magnitude v of VaI

v > N(1-e)(N(1-E)-2) - Irai ; (125)

with the bounds (94) and (97) the inequality (125) gives

v>.71N 2-.98N . (126)

Hence, (124) is satisfied if
71N2.98N 1 ln(2N/,/2) (127)

With (69), the inequality is true for g>1/4. This can be seen by a direct calculation for
N=4 and g=1/4, and the fact that the lhs of (127) increases more rapidly with N than the
rhs. Hence, we have

Theorem 5: For a DLS with unsubtracted dynamics and hyperbolic tangent output

function, the stationary point of Theorem 4 is stable if N>4, g>1/4, and I ral < N2 /4.

The conditions of Theorems 4 and 5 are easily satisfied in practice. Hence we have
the result that our DLS has a stable point in each Hadamard corner, for a large range of
thresholds that straddle the origin. Theorems 4 and 5 are in agreement with Theorem 3 for
gains g>50. The b unds used for the derivation of Theorem 3 are very sloppy, and have
been chosen in order to keep down the analytical work. (91) may be replaced by a less
stringent condition by using tighter bounds. In any case, Theorems 4 and 5 by themselves
suffice to assure a stable point in every Hadamard corner.

ENERGY LANDSCAPE

The energy provides a simple and natural way to visualize the dynamics. The
energy is a scalar function in signal space, and by ignoring N-2 dimensions in some vague
way we can imagine the energy function as a surface in three dimensional space. A point on
the surface depicts the signal y as the projection on the horizontal plane, and the energy
E(y) as the height of the point. The dynamics drives the signal point down the energy
surface, but generally not along the steepest path. This may be seen as follows. From (20)
one has

aE =-a= - a/s'(va); (128)
hence, in signal space the state changes in time by

Ya= - (0aE)/s'(va) (129)
Unless the derivatives s'(va) have the same value for all a, the direction of the signal

velocity i differs from the direction of -grad E. In the proportional region, these directions
are the same because s'(va)=g , V a. Hence, in the proportional region, the signal point
moves down the energy surface along the steepest path.

We explore the energy landscape for the case of maximum symmetry,
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r=o; (130)

application of a nonzero vector r would amount to tilting the energy surface, and this
would cause a change in the stationary points that is easily visualized. With (130), the
energy (22) is

E(y) = - abyc +f1. (131)

We restrict signals to lie in the proportional region. With R the Euclidean norm of the
signal, as given by (33), one then has

Q = R2 /(2g) (132)

exactly for the piecewise linear output function, and approximately for the hyperbolic
tangent, as shown in Appendix C. Hence, for either output function we have

E Sabc yaybyc + R 2/(2g). (133)

A few results may be derived without specifying the form of the connection tensor Sabc

beyond symmetry. Writing aa for a/y a , we have, from (133),

aE = - Sabcybyc + ya/ ,  (134)

and

ab OaE = -2 Sabcyc + 6ba/g (135)

At stationary states one has daE=O, so that (134) gives

ya= gS abcy y . (136)

This equation has the solution
y=0 , (137)

and perhaps other solutions as well, which we denote by y. The stationary point given by

(137) is the origin; at that point, (135) gives r

ab aE = 6ba/g. (138)

Since the tensor is positive definite, we have

Theorem 6: For a continuous DLS with r = 0 , and a neuron output function which is
either a hyperbolic tangent or a piecewise linear function, the origin is asymptotically
stable.

In order to investigate the stability of the other stationary points, y, we resort to a

trick that allows efficient use of equation (136). For a radial displacementr
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= bYa (139)
one gets

62 E = byasybabaaE = (,I) 2 (-2yaSabcybyc + R2 /g) , (140)

where (135) and (33) have been used. In the S term equation (136) can be used readily,
with the result

AE= (,,)2(-2yay a + R2 )/g. (141)

Using (33) once more, (141) may be written as

62 E = -(bu) 2 R2 /g. (142)

Since the second variation 62 E is negative, we have

Theorem 7: For a DLS with r=0, and an output function that is either a hyperbolic tangent
or a piecewise linear function, the stationary states y in the proportional region, but away

rfrom the origin, are unstable.

Calculation of the stationary points y requires that the connection tensor be
r

specified. For the unsubtracted tensor (14), equation (136) takes the form

2
ya = gN ; haa ya (143)

The equations can be decoupled by means of a Hadamard transform, with the result

ya= gV3ya 2  (144)

This implies that

either y = 3 or ya = 0. (145)

Denote by A the set of all indices a for which y. #0,

A = {al yJ#0} . (146)

By (145), the solutions y of (143) away from the origin may then be written
r

if a E A, ya = 1/(g'fN3 ) , else 0. (147)

Using (50), the norm R of y is found to be
r r

F F R =m Im(gNq3), (148)
r

where m>0 is the cardinality of the index set A.

For any signal y, the spectrum , is defined as the normalized Hadamard
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components, ca = ya/R, 
(149)

where R is the Euclidean norm of y given by (50); one has

= 1 . (150)

The unstable stationary points y of (147) have the spectrum
r

if a f A, = 1/Vm, else 0. (151)

The spectra given by (151) play an important role in the theory; we call them principal
spectra. The integer m is called the order of the principal spectrum.

The principal spectra of order one have a unit vector for a" We call such spectra

pure; they have signals that are proportional to P Hadamard vector. The principal spectra
of order two have two components equal to 1/ and all other components zero; they have
signals y that are proportional to the sum of two Hadamard vectors. The number ofN 1

principal spectra of order m is C(N,m) !The total number principal spectra

is 2N_1, which is nearly as large as the number of corner points of the solid hypercube.

The set of unstable stationary points y given by (147) is called the ridge set, since
r

they lie on the ridge of the central crater. For ease of reference we state the result

Theorem 8: The ridge set has principal spectra.

The spectrum of y may be seen as a unit vector along y referred to the Hadamard

base. It is of interest to write (149) as

Y= R a, (152)

and express the energy in terms of R and a . For the unsubtracted dynamics the energy

(133) then takes the form

E(R,4) = - 3 R3 G + R2 /(2g), (153)
where

G = %3. (154)

Expression (153) for the energy can be used for the further exploration of the energy
landscape, in two ways. One way is to fix the a and consider E as function of R. This

amounts to seeing how the energy changes along a ray through the origin. The direction of
the ray is set by the spectrum 4 a* In the second method the radius R is fixed, and we

regard E as function of the a* This function shows how the energy varies over the

hypersphere HR centered at the origin. Together these two cuts provide a complete picture

of the salient features of the energy landscape in the proportional region. We proceed with



27

the first cut.

For fixed G, the function E(R) of (153) has a minimum at R=0, and a maximum at

R = R = 1/(gN 3 G). (155)m

The R=O minimum is, of course, the stable point at the origin found before. The energy at
the maximum is

E(R) = 1/(6g3 N3 G2 ). (156)
m

E(R) is zero at R - R. It follows that there is a central crater surrounded by a ridge;

farther out the energy decreases to negative values. The ridge height given by (156)
depends on the value G, which by (154) depends on the direction of the ray (152). Hence,
the ridge is undulated, so that it has passes and peaks. The stationary points on the ridge
have principal spectra, by Theorem 8. For the principal spectra we have

G = 1/Vm. (157)

Using (157) in (155) and (156) gives, for principal spectra,

R = Vrn/(gvIN 3 ), (158)
m

and

E(R)=m/(6g 2N3 ) , (159)
m

which shows that the ridge can be passed easiest for m=1, i.e., along a ray pointing to a
Hadamard corner. Also, among the principal spectra, the pass is located nearest the origin
along those directions.

We need to be concerned that the points of the ridge set lie indeed in the

proportional region. For the piecewise linear output function, this region is given by
Iyal < 1. (160)

For the ridge set we have, from (147) and a Hadamard transform,

1 EAh (161)Ya = gN acA aa"

Since the sum over m Hadamard vectors has components which have at most the
magnitude m, a sufficient condition for the signal y of (161) to lie in the proportional
region is

g > m/N 2 . (162)

This condition is satified for any 0<m<N if

g>l/N . (163)

For the hyperbolic tangent output function, the proportional region is smaller than
that given by (160) by a factor that depends on the approximation accuracy required. By

(C9), the relative accuracy of the linear approximation is about y 2/3, where y is the
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maximum magnitude among the components ya' For instance, a 4% accurate linear

approximation results if I yal <1/3, V a. In order to obtain such accuracy for the ridge set it

would be sufficient to replace (163) by

g>3/N . (164)

Conditions (163) and (164) are easily satisfied, because in practice we want large gains in
order that the DLS be fast.

In practice, the central crater is very small. For example, for N=16 and g=50, the
radius Rm ranges from 1/3200 to 1/800, as m ranges from 1 to 16. These radii should be

compared to the radius R=16 for points of the 116.

Next, we take the hyperspherical cross section. On any hypersphere HR of points

YOa'

yy= R2  (165)

which lie in the proportional region, the stationary points of E given by (153), for fixed R,
are the stationary points of G, subject to the subsidiary condition (150). Those points can
be determined by using a Lagrangian multiplier,

0 = 0a (G + A (4a &-1)) = 3a 2 +2A a (166)

The multiplier A is calculated by multiplying with ca and summing over a; the result is

A=- 3 G. (167)

Substitution in (166) gives
0 = 4a(C/-G) , (168)

and it follows that for a stationary point of the energy on the hypersphere HR there is an

index set A, such that
if a f A, a=G, else 0. (169)

The value of G can be determined from (154):

G = m G3 , (170)

where m is the cardinality of the set A. The solutions of (170) are G=O and G = 1/1Vm.
It follows that the stationary points of the energy on the hypersphere HR have the spectra

if a f A, a= 1/Vm, else 0,
or (171)if a f A, 4 a= -1/Vm, else 0,

where A is any index set, and m is its cardinality. From (171) and (151) we have

Theorem 9: For a DLS with r=0, and an output function that is either a hyperbolic tangent
or a piecewise linear function, the stationary points of the energy function constraint to a
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hypersphere HR have, in the proportional region, *principal spectra.

It can be shown that for 1<m<N these stationary points are saddle points. For
m=1, i.e., the pure spectra, the positive solutions (171) are energy minima, and the
negative solutions are energy maxima. For m=N, the positive solution (171) is an energy
maximum, and the negative solution is an energy minimum.

The exploration of the energy landscape so far was restricted to the proportional

region. Farther out in signal space, near the boundaries of the solid hypercube JN=-1 1 ]N ,

the energy surface has a lip which turns up near these boundaries, and provides
containment of the state point. In the equations of motion the lip corresponds to the term
-va outside the proportional region. This term can assume any value in balancing the

equations of motion at equilibrium. Large magnitudes of va correspond to the large slopes

available on the lip of the energy surface. The lip structure is expressed by the features of

the function 0 that are not described by the approximation R 2/(2g) valid in the
proportional region.

DECOMPOSITION INTO LONGITUDINAL AND TRANSVERSE DYNAMICS

It is useful to introduce the notions of longitudinal and transverse parts of the

equations of motion. This involves defining the longitudinal part pl of any vector p in

signal space as the part of p in the direction of y, and the transverse part p as the part of

p perpendicular to y. One has

p II= -:rT-YT-' P=p- p. (172)

Application to the activation velocity vector , defined by the equations of motion (34) for
unsubtracted dynamics gives the longitudinal equation of motion

Ila= - via + Rv/N3 Gya + rIl, (173)

and the transverse equations of motion

, a =-vL a + VN 3
(y 2-RGYa)+ r L, (174)

where G is given by (154).

For ease of discussion we write the transverse equations of motion as

v = - v . + F , (175)

where

Fa = ,,N3 (ya 2 -RGya) + r L. (176)
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ADIABATIC FAKE DYNAMICS

The split of the equations of motion into longitudinal and transverse parts may be
used in the following manner. For fixed R, the transverse equation (175) describes the
activation velocity on a centered hypersphere HR of radius R in signal space. Suppose we

constrain the signal state point to remain on HR, while allowing the transverse dynamics

given by (175). The state point on HR will move to the transverse equilibrium, where =

0, and
v = F, (177)

by (175). We delete the longitudinal equation of motion (173) from the dynamics for now.
In the modified dynamics, we fix R, and wait for transverse equilibrium to be reached on
HR. After that has happened, we move to the "next" sphere HR+dR, and wait for

transverse equilibrium to be reached on that sphere. Then, we proceed to the next
hypersphere, etc. We call this fake dynamics transverse adiabatic dynamics. This dynamics
may be executed either forward or backward, as the radius R of the hypersphere is
increased or decreased in succession. The solution y of (177) depends on the parameter R;
the path y(R), R = 0 to R, is called a transverse adiabatic path. R is the maximum value of

m m
R for which y lies in the solid hypercube JN"

Let the signal point y be stationary in the true dynamics. Choose R such that y lies
S S

on HR. Then, move backward through the transverse adiabatic path. As the radius R is

diminished, the signal eventually falls in the proportional region, where

Ya = gva" (178)

But this implies that v is longitudinal, i.e.,

v=0. (179)

With (177) it follows that in the proportional region we have

F=0. (180)
This shows

Theorem 10: For a DLS with unsubtracted dynamics, let y be a stationary point of the true
S

dynamics, and let P be the transverse adiabatic path through y. Then, F = 0 along P in
Sthe proportional region.

It follows that there is a correspondence between stationary points and the solutions of Eq.
(180). We proceed to find these solutions, for the simple case r = 0. Then (176) becomes

F a - 3(ya2 _ RGya) (181)

With (152) this may be written
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FC=R2 0 3 2-GC,) (182)

and (180) gives

a 2_G0 ,=0. (183)

But this is the same as condition (168), so that the transverse equilibria on HR coincide

with the stationary points of the energy function constraint to the hypersphere HR . Of

course, such coinc-.dence was expected. With Theorem 9 we have the result

Theorem 11: For a DLS with unsubtracted dynamics and r=0, the transverse equilibria in
the proportional region have *principal spectra.

Each of the solutions of (180) corresponds to a stationary point of the true
dynamics, by Theorem 10. A stationary point y corresponding to the solution y of (180)

must lie on the transverse adiabatic path y(R) through y . Its location on the path is such

that there is longitudinal equilibrium, as stated by (173) with v = 0,

v a - aPtN3Gya (184)

r has been set to zero, as before.

For r=O, signals with principal spectra of orders one and two have transverse
adiabatic paths that are straight lines through the origin, as will be discussed in the next
section. For these cases, the location of the stationary point y on the transverse adiabatic

S

path (180) may be determined from the longitudinal equilibrium condition (184). Since
Vx= 0 along the radial transverse adiabatic path, (184) gives

v = RVtN 3Gy. (185)

S S

For a principal spectrum of order m, we have

G=/Vm , (186)

and (185) becomes

v= +  3 y. (187)

A solution of (185) may be obtained by writing

v =ve, y = Re; (188)
S S

where e is the unit vector along y. Eq. (187) then gives

v=R 2 N3 G , (189)
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with G=1 for m=1, and G=1/V,2 for m=2. For the hyperbolic tangent output function (18)
the function v(R) implied by R=s(v) is

1g I+R(10
v(R)= 1Iny11 (190)

by (C2), so that the solutions of (187) must satisfy the equations

m=1 In R R2 N3  (191)

m=21 I + 1 R 2V(N 3 /2) (192)

The stationary points of the true dynamics for signals with principal spectra of orders one
and two can be found by solving Eqs. (191) and (192) for R.

CONSERVATION OF PRINCIPAL SPECTRA

We have seen that, for unsubtracted dynamics and r=O, the transverse equilibria in
the proportional region have *principal spectra. This means that the adiabatic fake
dynamics in the proportional region conserves *principal spectra. Will this also happen in
the true dynamics? Let Ca be a principal spectrum of order m. Then,

a2-a//m = 0 (193)

as follows from (151). The importance of (193) is that it provides the possibility of
replacing the quadratic term in the equations of motion by a linear term. For unsubtracted
dynamics the equations of motion (34) then may, with (152), be cast in the form

va=-va + R2 1V(N3 /m) Ca + ra, (194)

where a Hadamard transform has been used to write a in terms of 1 a Suppose r has the

same spectrum as y; then we may write

ra=C4 a, (195)

where c>0 is some fixed coefficient, and (194) becomes

v a=-va + R2 (N 3/m) 4 a + ca. (196)

In the proportional region we have
1 Rva= g Ya = g~a' (197)

so that (196) may 
be written

d = (-R+gR2 V(N 3m)+gC)C (198)
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This equation is satisfied if

2 3R=-R+gR V(N /m)+gc, (199)
and

0a= .
(200)

consistent with (193). Hence we have as result

Theorem 12 Let be a principal spectrum. For a DLS with unsubtracted dynamics and
r=c$, the principal spectrum is conserved in the proportional region.

Initial conditions and c can be chosen such that the function R(t) subject to (199)
increases monotonically. Since the spectrum is constant as the signal point traverses the
proportional region, the path is a straight line through the origin. The path is a staight line
only if the spectrum is *principal. Upon leaving the proportional region, the path generally
curves away from a straight line, because of distortions in the spectrum produced by the
nonlinearity of the output function. We know of two exceptions to this behavior, viz., the
principal spectra with m=1 and m=2.

In the former case, the signal is proportional to a single Hadamard vector, and all a

(the spectrum components in the neuron frame) have the same magnitude, 1IN. The
nonlinearity of the output function s(.) then applies uniformly to all components, so that in
(196) the I val remain equal to each other. It follows that the signal path remains straight

all the way to the stationary point in the Hadamard corner.

For the other case, m=2, the spectrum is proportional to the sum of two Hadamard
vectors, say h3 and hT,

a=(1/V(2N))(hOa +h ya) , (210)

so that the components 4a are 2//(2N), -2/V(2N), or 0. A zero value for 1 'a gives va=0 by

the antisymmetry of the neuron output function s(.), and that is consistent with (196). The
other two possible values of 4 a lie symmetric with respect to 0, and will give equal

magnitudes for the corresponding components of va, again by the antisymmetry of s(.); this

is consistent with the equations of motion (196). It follows that the signal path remains
straight outside the proportional region, all the way up to the stationary state. For
sufficient gain, the stationary state will have components 0 and *A, where A is close to or
equal to unity, depending on the output function used. By Theorem 3, such a stationary
state is unstable.

SPURIOUS STATES SHIELD SPOILS EARLY DYNAMICS

The forgoing explorations provide an orientation and preparation for the main
dynamics problem of the DLS: With the initial activation reset to zero, and the BLT
output u presented to the DLS as external coupling, at what state will the DLS settle? We
want this final state to be the Hadamard vector that is dominant in u.
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In this regard we need to be concerned about the term (N 2- 4 N)hla in the

expression (66) for ra. This term has the large magnitude N 2-4N, and it was added to r a to
shield against spurious states, as can be seen from the proof of Theorem 2. The term tilts
the energy surface by a large amount in the direction of the first Hadamard vector, h1. As
a result, the signal state point y will, in its gradient descent down the energy surface (in
the proportional region) slide over the side of the gully that runs towards the dominant
Hadamard point, and end up in either the adjacent gully, or in a gully several Hadamard
vectors over. In any case, the state point will have left the gully which leads to the correct
Hadamard point. This causes the DLS to settle at the wrong Hadamard point. The
unwanted effect is largest close to the origin, where the undulating features in the energy
landscape are subtle, so that the tilt of the energy surface has a large effect. Hence, the
large threshold term (N 2-4N)hla , which was deployed as as shield against spurious stable
states, spoils the early dynamics.

What is to be done? Either we have the protection against spurious states, and the
wrong early dynamics, or we have the correct early dynamics, but face, later in the state
development, the hazard of ending up at a spurious state. Under the circumstances, we

choose the latter. The troublesome term (N2- 4 N)hla in the vector ra is dropped, and we
use the expression (41) or (44) for ra in the external coupling or the initial value coupling.
In either scheme, the vector ra still contains a term that is proportional to 6al , with
magnitude cN in the external coupling, and with magnitude c in the initial value coupling.
These terms cause no problems with the dynamics, because they provide the same force in
the direction of all Hadamard points.

We proceed with the investigation of the dynamics with this arrangement.

DYNAMICS IN THE PROPORTIONAL REGION

For unsubtracted dynamics, the Hadamard transform of the equations of motion in
the proportional region is given by (48). These equations are uncoupled and they can be
integrated as follows. The index a is temporarily suppressed. (48) may be written

dy/(y-y+) - dy/(y-y_) = (y+-y_) gVN3 dt, (211)

where y+ and y_ are the roots of the quadratic form

y2 -y/(gVN 3 )+r/VN3. (212)

We recall that for r = 0 the energy landscape features a central crater surrounded by an
undulated ridge. Applying ra=A(ua+cbal) in the external couling scheme means tilting the
energy surface. For very small A this shifts the stable stationary point away from the
origin. A second stationary point occurs at larger radius, and this point is unstable.
Choosing progressively larger values for the coupling constant At makes the two stationary
points come closer, coalesce, and disappear. This corresponds to the discriminant of the
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quadratic form (212) becoming smaller, zero, and negative. There is no stationary point in
the proportional region iff there is an index a for which the quadratic form has complex

roots; there is then no point at which 5 = 0. The three cases: different real roots, coinciding
roots, and complex roots have different dynamics and must be considered seperately.
Starting with the case that the roots y, are complex, we have

y±= p e*i 7, (213)

where

p = r/N3/4, (214)
and

cos 17 = 1/((2gffr N3 / 4 ) . (215)

(211) may be rewritten as

dy/(y-y+) - dy/(y-y_) = 2ivdt, (216)

where

v=V(g 2 r,/N 3-1/4). (217)

The integral of (216) with initial condition y(0)=O is

In (y - YY+ ) =2iv, (218)
(y - y- Y +

which may be written

y - + + 2iv4y - Y- Ye . (219)

This gives
e - 2 i v t  e i Vt _ e -iVt e iv _ e- ivt

Y=Y+Y- 2i vt=Y+Y- ivt -t =Y+Y- i( 7 +
y - Y+ e Y+ e -ye 1ve (nvt) - e&'(7l±L/t)

sin v t
a (220)with the result Ya= Pa sin(1a+Vt)'

where the index a has been reinstalled. With the index a shown, (214), (215), and (217)
read

Pa=vra/N3/4 , (221)

cOs l7, = 1!(2gV/ra N3/4) , (222)

and Va = V(g2 r aN 3 - 1/4) . (223)

In the external coupling scheme we have

ra = Igua+cNhal), (224)

where u is the BLT output (3). In (224) we have h al=l V a. In the interest of readability,

we will drop the hal and write (224) as
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r a=gu a+CW (225)

committing a notational sin in tensor calculus since in (225), a scalar c'N appears to be
added to a vector u a* Using the Hadamard transform of (3) in (225) gives

r a= p1 N (ca+c) , (226)

where ca = x.qa. (227)

Recall that x is the SRM input vector, and the q a are the bipolar stored vectors. Use of

(226) gives for (221), (222), and (223)

Pa = V(ca+c)IN) , (228)

cos ?7a= 1/(2gNV(gca+c)), (229)

Va= V(g2 N2 j(c a +c) -1/4) . (230)

So much for the case that the quadratic form (212) has complex roots. Two other cases
remain to be investigated: the two roots coinciding, and two different real roots.

For the coinciding roots, the discriminant
Da = 1/(g 2 N3 ) - 4raN 3  (231)

is zero; this implies

A(c a +c)=1/(4g 2 N2 ) . (232)

The single root is

ya = 1/(2gVN 3), (233)

and the equation of motion (48) with initial condition ya(0)=O has the integral

ya= y (1- 1 .3t)  (234)

This shows that

t 0, O<y a<yO = 1/(2gN3). (235)

For large dimension and gain, y is small.

Next, we consider the case with two different real roots. There are three subcases:
c a+c < 0, ca+c=O, and c a+c > 0. For c a+c=O, the equation of motion (48) with initial

condition Ya(O)=0 gives ya = 0 for all times. For c +c < 0, the roots are written

y+=pe , y_ =-pe , (236)

where

p = /(-r)/N31 4 , (237)
and r7' is determined by

sinh 7' = 1/(2gN3/ 4 /(-r) . (238)
With
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v,= V(1/4-rg2 N3 ) , (239)

the equation of motion (48) with initial condition y(O)=O has the integral

sinh v't (240)
cosh(7' +v' t)

For large t we have

y--pe- I =y. (241)

Since the function y(t) of (240) is monotone for t>0, we have

t>O, O<ya<yo,., (242)

where the index a has been reinstalled. Use of (226) gives

y--- = (1/2 - (1/4-s(c -c)g2 N 2)/(gVN3) . (243)

For

-«(ca-+c)g2N2 << 1 (244)

we have
y a- L- A(ca+c)g1N, (245)

which is small for large dimension and gain, considering (244). For p(ca+c)g2N 2 of order

unity, y&-- of (243) is small for large g and N. For -L(ca+C)g2 N2 >>1 we have

Iy -I- V&(-(ca+c)IN) , (246)

which is small for large dimension. By (242) it follows that I yaI always remains small if g

and N are large.

Finally, for the case with real roots y, and ca+c > 0 we have

yL = p el, (247)

p=V/r/N 3 / 4 , (248)

cosh n' = 1/(2gVr N314 ) , (249)

v, = ](1/4-rg2N3/2) . (250)

The integral of the equation of motion (48) with initial condition y(0)=0 is

y = p sinh 't (251)
sinh(l+vt)"twe5

For large t we have
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y - p e-7 7= y_. (252)

Since the function y(t) given by (251) is monotone, and y(O)=O, it follows that

t>O, O Y <Y', - ) N (253)

where the index a has been restored. Since the case considered has two different real roots

and c a+c>O, we have 0<4i,(ca+c)g 2 N2 <1 in (253), and it follows that

0<1-,(1-4gc a +c)g 2N2 )<l (254)

Hence, y 0- is small for large g and N.

We have seen that, for the case that the quadratic form (212) has real roots, I yal

has a bound that is small for large g and N. Hence, for a DLS with unsubtracted dynamics,
large gain and dimension, using the external coupling scheme, the signal y can get
substantially away from the origin only if there exists an index a for which the roots of the
quadratic form (212) are complex, i.e., if

3 a such that g2 N2 (c,+c) > 1/4 (255)

for all such a, the Hadamard component y a of the DLS signal y is given by (220). We

consider here only cases such that the dominant Hadamard vector in the BLT output u is
unique, i.e.,

c#>c/3 ,V at. (256)

The index /3 for which (256) is true is called the dominant index. Eq. (227) shows that if
two coefficients c7 are different, they differ by at least 2. Since ca[-N,N] because of the

bipolar nature of qa and x and (227), (256) implies that

c/3[-N+2,N ] . (257)

It fclows that the condition (255) written for the dominant index /3,

g2 N2 a(cp+c) > 1/4 (258)

is satisfied if we choose
c=N, (259)

and

A > 1/(8g 2 N2 ) (260)

For our DLS to work, the signal y must traverse the proportional region. With the results
of this section this means that in the proportional region and for large dimension and gain,
at least one Hadamard componcnt must grow according to (220). Clearly, one of these
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Hadamard components is the dominant Hadamard component yo. It follows that for the

dominant index 3 the roots y:, must be complex; this is the case if (260) is satisfied. Hence

we have

Lemma 5: For a DLS with unsubtracted dynamics, externally coupled to a BLT, with large
dimension and gain, and with the coupling constant satisfying (260), the dominant
Hadamard component grows in the proportional region according to (220).

So far in this section we have considered the dynamics in the proportional region for
a DLS with external coupling to the BLT output u. We briefly consider the other coupling,
i.e., initial value coupling. We now have expression (44) for the vector r. The Hadamard
components are

r = (c/VN)h al. (261)

For complex roots y, we have from (216), and the initial value

ya,(0)=i gu a  (262)

the solution

p sin vt + gjiuasin(m7-vt)

y=p P p sin(,/+vt) - giuasin t (263)

wherc
p=Vc/N, (264)

CO1 (265)
cos 77= 2g](cN) (2

and V=V(g 2cN-1/4). (266)

The condition for the roots to be complex is

c>l/(4Ng2) . (267)

The roots must be complex in order that the signal y can traverse the proportional region.
Condition (267) is satisfied if we choose

c=l/(2Ng2 ) . (268)

For this value of c, (264) to (266) become

p=l/(gV(2N3)) , (269)

cos 77= 1/v'2 (270)

V= 1/2 (271)
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(270) shows that 77=7r/4 , and (263) becomes

(V2-za) sin vt + z cos t
Y(a2Pcos vt -(z(2 V-1) sin t (7

where

za= g2J ,Uv(2N3). (273)

There is a time t a_ such that the function ya(t) given by (272) is monotone and

increasing in the interval
0<t<t10= (274)

and y(t a.)=O (275)

t decreases for increasing z . Since z is largest for the dominant index #, t is smallest

for y . It follows that yo given by (272) increases indefinitely as t approaches to . Of

course, at sometime during this process the signal y leaves the proportional region. The
singularity at t 13 dominates the behavior of y, as t gets close to ta. This results in
spectral purification, as will be discussed in the next section. We note here a disadvantage
of the initial value coupling: if up<0, the initial signal has negative y , and it takes time

for the yo to become positive (as required, because we want the signal to go to hI) by the

action of the threshold term r given by (261). The external coupling does not have this
delay, since with c given by (259), co+c in (226) is always positive, so that the y 0 becomes

positive immediately after reset of the DLS. In this regard it should also be noted that it
takes time to reset the activation to any value, be it L Ua+ Ncb al) or zero, because

amplifiers have a finite slew rate.

SPECTRAL PURIFICATION IN THE PROPORTIONAL REGION

A surprising property of the DLS is that already in the proportional region, long
before the signal y comes close to the boundaries of the solid hypercube JN I the spectrum

gets purified towards the dominant Hadamard vector. This purification is due to the
activation nonlinearity and the mathematical nature of Hadamard vectors. The spectral
purification plays an important part in the development of the state, which, starting from
the origin (by reset), makes its way towards the dominant Hadamard point h by gradient

descent along the energy surface. Although spectral purification occurs also for initial value
coupling, this will not be investigated here, because of the practical disadvantage of this
coupling as noted above, and this report is getting too long. For the external coupling, the
BLT output u is coupled to the DLS by means of the term

r =a(iu a+ cVN) (276)

in the Hadamard transform (48) of the equations of motion; unsubtracted dynamics is used
here. The BLT output u is given by (3), with the Hadamard components



41

u ,=VN cc, (277)
where

c,=x.qa ,  (278)

as given by (4). Remember that qa are the stored vectors, and x is the input vector. With

(277) and the choice (259) for c, (276) gives

r,=,VN (ca+N) . (279)

The dominant Hadamard vector in u is the Hadamard vector with the largest coefficient in
the Hadamard expansion of u. Hence, fl is the dominant index in u iff

Cc a , V (280)

We can also consider the dominant index in the signal y; it is the index iJ 'u,. that

y/>ya, V a'/ . (281)

Both (280) and (281) imply that the dominant index is unique; we restricted the inputs x
such that this is the case. This condition excludes any input vector x which has more than
a single nearest stored state.

Since for early times the signal y is about proportional to the vector r, and r is given
by (276), the dominant index in u is, for these times, the same as the dominant index in y.
Hence, for 2arly times, i.e., close to the signal origin, these two definitions of dominant
index may be interchanged.

Let # be the dominant index in y, and let a the index with the next smaller
Hadamard component c a We call the ratio

= YO/ya (282)

the dominance ratio. The dominance ratio changes through the proportional region. As the
signal y traverses this region as described by the equation of motion (48), the norm of y
increases, until the outer edge of the region i6 reached, say, at yo=K >0. The value of K
depends on the other Hadamard components ya' since the boundaries of the proportional

region are given in terms of the ya' not the y a* It is convenient to have an estimate which

does not equire knowledge of the other Hadamard components y a For the case of a

piecewise linear output function, such an estimate is given by

Lemma 6: For a DLS with piecewise linear neuron output function, let the signal y have a
unique dominant Hadamard component y,=K, and let the dominance ratio be R. ==>

Proof: By the inverse HIadamard transform we have
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ya=(1/0) haayi (1/q'N)(ha Y/3+ p haaya). (283)

With y/3=K and Iya RK , V a4/3, one has from (283)

IYa[I (1/V(N)(K+(N-1)K/R) . (284)

For the piecewise linear output function, the proportional region is given by

lYal<l . (285)

Then, (284) implies that y lies in the proportional region if

Ni1K<V/(I+ V ). J (286)

We are interested in the dominance ratio at the point with y/3=K. Different cases

need to be considered. First, we look at the case with

c f--N+2 . (287)

Since the dominant index 3 is assumed to be unique, and ca has the range [-N,N], one

must have
ca=-N, V (288)

At this point we choose the coupling constant as

,a=l/(4g2 N2 ) ; (289)

this choice satisfies (260), and with (259) and (287), condition (255) is satisfied for index /3.

It follows that for index / the roots y, are complex, so that the development of yo in time

is described by (220). But for the other indices, (288) and (259) show that c a+c=O, so that

Ya= 0 , V t00. It follows that in this case the dominance ratio [R is infinite, V t00 and, of

course, y in the proportional region. Hence, in this case the spectrum is pure from the start.

The next case considered has
c,3=-N+4 .(290)

If the next smaller Hadamard coefficient is c a=-N, then the considerations for the previous

case apply and we have IR=ac, V t>0, in the proportional region. If the next smaller
coefficient after co3 is

c a=-N+ 2 , (291)

then both y and Ya are given by a formula of the type (220), and we have, with yo3=K ,

FR = K/ya=K sin( a +v at)/(pasin(vat), (292)
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where pa' 77a) and va are given by (228) to (230), with c=N; hence

p a=V ((ca/N+1) , (293)

cos 77,=1/(2gNV /a(ca+N)) , (294)

and vc= V(g2 N2 1L(c a+N)-1/4) (295)

For the coupling constant given by (289) we have from (293) to(295)

(ca/ N+1) (296)Pa=- 2gN '(26

cos77a=l /V(c a+N) , (297)

and
va=(1/2 )V(ca +N-1) . (298)

As the gain g or the dimension N is increased indefinitely, p a of (296) tends to zero.

Then, the equation K=y ,for y 3 given by (220), viz.,

sin v/t (299)
K- =P/3 sin n/3+v/3t(

can be satisfied only if the denominator goes to zero, i.e., if

1/3+V/3t - ir. (300)

With (290), (297), and (298), the statement (300) gives

t-i 47r/(3 13) . (301)

Using this result, together with the pa' 7, and v a given by (296), (297), and (298) for the

c of (291) gives for the dominance ratio (292), after a short calculation,

[Rl1.38KgN 3 / 2 , (302)

if either g or N is large. Using Lemma 6 with the equal sign together with (302) gives the
result

large g or large N, IR_-1.38gv -N+1 . (303)

Hence in this case the dominance ratio at the signal point with yfl=K can be made as large

as desired by choosing either N or g large enough.

Next, we consider the case with
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c=-N+A , A>6, (304)

The smallest dominance ratio results if the next smaller coefficient ca is

c -c= 2. (305)

For fixed A6 i7, a, ) v0, and va do not depend on N or g. As g or N is increased

indefinitely, pa tends to zero, and we must have (300), as before. Statements (301), (302),

and (303) go through with different numerical factors; the important point is that these
factors do not depend on g or N. The cases considered exhaust all possibilities for smallest
R. Hence we have

Theorem 13: For a DLS with unsubtracted dynamics, externaly coupled to a BLT with

ra=A(ua+N 2 a,), and a coupling constant jL = 1/(4g 2 N2 ) ==> the dominance
ratio IR at the outer edge of the proportional region can be made arbitrarily large by taking
either the gain g or the dimension N large enough.

FINAL PURIFICATION

After traversing the proportional region, the activation enters the region where the
nonlinearity of the neuron output function is important. By Theorem 13, the dominance
ratio at the edge of the proportional region can be made arbitrarily large by choosing a
large gain or dimension. What happens to the dominance ratio in the region where the
nonlinearity in the output function is important? We have

Theorem 14: For a DLS with unsubtracted dynamics and a piecewise linear neuron output

function, externally coupled to the BLT output u by ra=/V(ua+N 2Sal), with coupling

constant A = 1/(4g2 N2 ) , and with the activation reset to zero at the time of application of
u, the signal y settles at the dominant Hadamard vector in u, if the gain g is large enough.

Proof: For unsubtracted dynamics we have the equations of motion (34):
,a= - va + N ; haaYa 2 +/z(h a a+N2 al ) , (306)

where (41), (3), and (259) have been used. Showing the /f term in the sum separately, this
is written as

va=-v +±N(h y02 + E hay2) + g h aC+N 2 6a). (307)

Similarly, we write

ya = (1/vfN) ha aya = (1/vN) (hflay# + afl hmy a) . (308)

There are separate arguments for a=l and ai1. We start with the case al1. (307) gives

ai1 , ,a= - va + N (h Oa yfl2 + E haaya 2 ) + Ahaaca. (309)
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With the choice (289) for the coupling constant, one has for the last term

lac <_ 1/(4g 2) , (310)
since I ca IN , by (278), and the bipolar nature of the vectors x and qci" It follows that the

l haaCaI can be made arbitrarily small by choosing the gain large enough. Next, consider

the term a# haaYa 2 in (309). Let y be at the edge of the proportional region. Then,
y,=:K, and I yI <K/R , V ac43, and it follows that

l Johaaa 2 1.(N-1)K 2 /R2 . (311)

By Theorem 13, IR can be made arbitrarily large by choosing g large enough. It follows that2
the term J, h aaYa tends to zero as g goes to infinity.

Since at the edge of the proportional region we must have

Ival1/g, V a, (312)

the v a also tends to zero as g goes to infinity.

It follows that, for fixed dimension N and a fixed activation v at the edge of the
proportional region, we have

a#1, Va- N h Payfi 2 as g-. c. (313)

We still need to consider a=l. The equation of motio1, (306) gives

a=1 , v 1 =-v 1 + N ; hyalY 2 +(h o l c a+N 2 ). (314)

For the last term one has

Ih'1a 2 11;,N2 2 (315)
Ihc~la+N)I=I ca+lN2 1 2, 35

provided that the dominant index is unique; the proof is left to the reader. It follows that

v1 >0 , V t>0 (316)
and for the stationary point

Vl- Ny y +  • (317)

From (308) we have

I aoih aaYI<(N-1)K/tR-1 0 as g- , (318)

because of Theorem 13. Hence,
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ya (1/WN)hpay# =(K/VN)h~a, as g- . (319)

At the edge of the proportional region, 3 b such that 'yb = 1 . By (319) one has, for this

index b,

1= IybI =K/,VN , as g- c, (320)

so that
K-N as g-(321)

Hence, we have from (319)
ya-#h a, V a, as g-4 c. (322)

(322) implies
I Ya -l, Va, as g-- . (323)

and
ya=(1/VN)haah a= /N 6a# (324)

For a piecewise linear output function, the signal y does not always describe the
state unambiguously, and we then need to work with the activation v. From (324) we have

at1, ,a-#N2 h~a, as g- ®. (325)

For large g, (322) shows that the activations v a for ail all have about the same

value, 1/g. By (313), the same the time derivatives ' a#l. all have the same magnitudes,

and their signs are the same as the signs of y a* It follows that shortly after the activation v

leaves the proportional region, all components va , a#l are still about the same, and all

exceed 1/g in magnitude. Hence, at that time t1 we have

at1, Ya=ha exactly. (326)

Eq. (313) remains true, so that for ail the changes of va brought about by *a of (313)

always have the same sign as va, and y a=h does not change at all (remember s(.) is the

piecewise linear function). Hence, for atl a stationary point is reached with

v a-N 2 hfla ) as g-m . (327)

For a=l, we have for the stationary state, by (317),

vI>Ny aya +2-.Ny02 +2=N 2+2 , as g-a, (328)

by (324). Since, for large g, N 2+2> 1/g , we have for the stationary point

Yl=l , for large g. (329)
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(327), (322), and (329) show that, for large g, the state moves to the stationary point

Ya=h Oa , V a. j (330)

Two comments are in order. First, the condition jL=1/(4g 2 N2 ) on the coupling

constant can be relaxed to an inequality 1/(4g2 N 2 ) j .< c/(4g2 N 2 ) , where c>1 is some
number that can be determined with further effort. This relaxation of the coupling constant
condition is important in practice, where we want a margin for structural parameters. We
have not used an inequality for p in order to keep the proof simple. The estimations used
can be sharpened considerably; the sharper the estimates, the larger c can be.

The second comment is of a more serious nature. However much the estimates used
in the proof of Theorem 14 are sharpened, the maximum coupling constant jL allowed is

expected to be still small, because the basic factor 1/(4g2 N2 ) is so small (3.9x10 - 7 for
N=16 and g=50). The practical problem with such small coupling constants is that they
make the DLS exceedingly slow, because a very long time would be needed to develop the
DLS activation to appreciable levels, after reset to zero at the time that the BLT output u
is applied. In practice we need large gain and a coupling constant of the order of unity, for
the sake of speed. Moreover, the important practical applications of the SRM are expected
to have large dimension N. It is clear that for such fast SRMs Theorem 14 does not provide
an assurance of perfect associative recall. Numerical computations have shown excellent
performance for N=16 and coupling constants as large as 0.2, but this does not imply that
such machines with much larger dimension would work for practical values of the coupling
constant.

The basic problem is that the spectral purification processes captured by Theorems
13 and 14 do not describe the powerful purification that goes on in a DLS for signals close
to the boundary of the solid hypercube. Such purification is observed clearly on the
computer. A strong effort is needed to study this point and to provide a theorem that
covers practical values of the coupling constant.

NUMERICAL COMPUTATIONS

Computations have been carried out to investigate the associative recall of SRMs of
dimensions N=8 and 16. In these computations, a bipolar vector x is presented to the SRM
front stage, and the output x' of the SRM is compared with the stored vectors q. ' a=1 to

N . The SRM has perfect associative recall if for every bipolar input vector x the output V
is the stored vector q a nearest x, provided that the nearest stored vector is unique. The

latter condition is accounted for by letting the computer skip input vectors x which have
multiple nearest stored vectors. With these exceptions, the test of associative recall is

Napplied to all vectors x of the N dimensional hypercube IN={-1,1}
The N stored bipolar vectors qa were chosen at random, but were kept fixed during

the run of x over the IN. In the early stages of the project, before the theory was

adequately developed, we had some notions that complelled us to store only N-1 vectors,
which were subject to the condition that their first component always be +.

The SRM front stage is the BLT, which in the computations performs a linear
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transformation of x by the matrix B, as shown in (1). The matrix B is the sum of outer
products of the stored vectors and their labels, which are Hadamard vectors. The label for
the stored vector q a is the Hadamard vector h The BLT output is the vector u. In

calculating u, the response time of the BLT amplifiers has been neglected. This was done to
speed up the computations, and because a finite response time is not expected to change
the results of the associative recall computations. The basis for this expectation is the
absence of feedback in the BLT; there is no settling of u other than the smooth growth
from zero to the full output.

The BLT output u is presented to the rear stage, the DLS, for further processing. In
the computations, both coupling schemes, the initial value coupling, and the external
coupling, have been used. In early stages of the project we used initial value coupling out of
fear that external coupling would make spurious states possible. This is ideed the case, but
we have since found out that, although spurious states exist, they are dynamically
inaccessible in the external coupling scheme, provided that the coupling constant and gain
are chosen properly. The initial value coupling was first applied with very small coupling

constants, typically 10- 7 . This coupling constant is just large enough to place the initial
activation outside of the central crater, so that the state does not fall back to the stable
origin. For N=16, perfect associative recall was found. However, the computations were
very slow because of the small coupling constant. In practice, this would show up as a slow
settling of the DLS. Moreover, in practice the weak initial value coupling would be
vulnerable to noise. It was decided to diminish this vulnerability by increasing the coupling
constant. It was found that then the gain must be diminished, in order to keep the recall
perfect. The small gain was found to slow down the DLS . In response to these difficulties,
we reexamined the external coupling, and started bearing down on the question of dynamic
accessibility of the spurious states which are brought into existence by removing the safe

threshold (the term (N2 -4N)hla in (66)).
Extensive computations were done for the external coupling scheme. The strength of

this coupling, i.e., the coupling constant A in (41) affects the settling speed of the DLS, in a
similar - ay as for the initial value coupling. In this regard, Theorem 14, which guarantees
that the DLS works if the gain is chosen large enough, is subject to the condition (289) on
p, and the coupling constant values allowed are much too small in practice. Therefore, the
numerical computations were done with much larger coupling constants, typically 0.2.
Perfect associative recall was found for these SRMs, with gains of 50. We were interested in
the spectrum purification, as the state developed from reset at zero to the dominant
Hadamard corner. A very strong purification was noticed upon entering the partially
supercritical region. The entering of this region was easily spotted when the piecewise
linear output function was used, since then the enirely subcritical region is given by
I VaI <1/g, where g is the gain. The strong purification observed in the supercritical region
is not exposed by Theorems 13 and 14, and hence, these theorems do not get at what makes
the DLS work with practical values of the coupling constant.

Besides the two coupling schemes, a choice had to be made between subtracted and
unsubtracted connection tensors, and between using yl clamping or not. The computations

range over a number of cases, but do not cover all possibilities because of the computer
time involved. The associative recall computations require, for each input vextor x, the
numerical integration of N coupled nonlinear differential equations of first order. For
N=16, the computation runs over 216 =64K input vectors, although some of these are
skipped because of multiple nearest vectors.

On a number of occasions it was observed that yl clamping speeds up the settling of
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the DLS, and we expect this to be true in general.

The numerical integration of the DLS equations of motion was done in time steps

which typically had the duration 6t=10- 5 . The time step must be compared to the RC
time of unity for the equations of motion in the normalized form (15).

We need to discuss the cutoff for the numerical integration. After considerable
experimentation, we settled on a scheme in which the integration is terminated if, for all
indices b=1 to N, {IvbI5/g and Ivb(t)I Ivb(t-106t)I} . The factor 10 in t-10tt was

chosen to accomodate fluctuations in stochastic computations which use the same computer
program. The stochastic computations will not be discussed here, but will be reported
separately.

The following is a partial list of associative recall computations performed. All these
runs showed perfect associative recall.

-7
1) N=16, initial value coupling with j=lxl0- , unsubtracted dynamics, yl

clamping. Hyperbolic tangent output function with gain of 10.
-72) N=16, initial value coupling with jz=1xl0- , subtracted dynamics, no Yl

clamping. Hyperbolic tangent output function with a gain of 10.

3) N=8, initial value coupling by Eq. (45) with A=0.0001 to 0.1, with zero threshold
(c=O in Eq. (44)). piecewise linear output function with gain of 0.25. Unsubtracted
dynamics with yl clamping.

4) N=8, external coupling by Eq. (41) with c=O and A=1.0. N unrestricted stored

bipolar vectors. Unsubtracted dynamics without yl clamping. Piecewise linear output

function with gain of 20.

5) N=16, external coupling by Eq. (41) with c=0 and A=0.5. N-1 stored bipolar
vectors with first component +. Subtracted dynamics with yl clamping. Hyperbolic

tangent output function with gain of 50.

6) N=16, external coupling by Eq. (41) with c=0, and A=0. 2 . N-1 stored bipolar
vectors with first component +. Unsubtracted dynamics with yl clamping. Hyperbolic
tangent output function with gain of 50.

7) N=16, external coupling by Eq. (41) with c=0, and /I=0.2. N-1 stored bipolar
vectors with first component +. Unsubtracted dynamics with yl clamping, piecewise linear

output function with gain of 50.

8) N=16, external coupling by Eq. (41) with c=N, and A=0. 2 . N unrestricted
bipolar stored vectors, piecewise linear output function with gain of 50. Unsubtracted
dynamics. No yl clamping.

9) Same as 8), but with yl clamping.
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CONCLUSION

The main result is contained in Theorem 14. This theorem assures perfect
associative recall of an SRM consisting of a BLT, externally coupled to a DLS built as a
quadratic Hadamard memory, if the coupling constant is as specified, and the gain is large
enough. The theorem holds for any dimension that is a power of 2. The theorem is derived
for unsubtracted dynamics and a piecewise linear output function. It is good to have such a
theorem that is valid for the large dimensions that are expected to be important in
applications. The condition of large gain in Theorem 14 is likely to be met in practice,
because large gains are desirable in order to have a fast acting DLS. Of course, the values
of the gain required would have to be determined by sharpening the estimates. The small
value of the coupling constant A required by the theorem constitutes a problem in practical
applications, however. Such small coupling constants would slow down the DLS to an
unacceptable degree. Numerical computations of the signal development in the DLS for
coupling constants as large as 0.2 have shown that it is not necessary to have a large
dominance ratio at the edge of the proportional region; a very strong spectral purification
occurs in the final stages of state development, outside the proportional region. This
purification is due to the clipping done by the output function, in a manner that is not
understood at present. This mechanism is not captured by the present analysis.

Theorem 1 excludes limit cycles from the DLS dynamics. Theorem 2 together with
Theorem 3 essentially show that no spurious stable states exist provided that conditions on
thresholds, gain, and dimension are met. These conditions are easily satisfied in practice,
but the thresholds prescribed are inconsistent with the requirement of gentle nudging of the
state into the "correct" gully by the external force, after reset to the origin. Theorem 2 is
in agreement with results obtained from the asynchronous discrete DLS model discussed in

S9]. For the continuous DLS of 1ractical applications, the large threshold term N2 -4N of
66) must be dropped, and the vector ra must be taken as specified in (41), with c=N, as

determined by (259). Doing this lifts the shield against spurious states, but Theorem 13
assures that the final state is the dominant Hadamard vector, as desired, provided that the
coupling constant is as specified and the gain is large enough.

This result can be understood from the features of the energy landscape. The
external coupling tilts the energy surface just a little, if the coupling constant A is small.
The tilt also is necessary for the state to move away from the starting point, the origin. For
very large values of ju the tilt is so severe as to destroy the stabilty of the Hadamard points.
For a range of intermediate values of A one expects proper behavior of the DLS. It would be
valuable to determine this range from theory, since for the practical dimensions N>32 a
complete check of associative recall by numerical computation is out of the question
because of the computer time required.

Theorem 3 assures the instability of any stationary signal which has components y a
which not all have values near ±1. An example is given by signals with a principal
spectrum of even order m. Such a signal has components ya that are zero, because of the
nature of Hadamard vectors. For m=2 the spectrum is conserved in the proportional
region, by Theorem 12, and also further out, beyond the proportional region, because the
signal trajectory is a straight line through the origin in this case. By Theorems 10 and 11,
there is a stationary point with this spectrum, if r=O. By Theorem 3, this stationary point
is unstable.

Some of the theorems specify the hyperbolic tangent threshold function, while others
use the piecewise linear function. These choices have been made to expedite the proofs. It is
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is expected that the results obtained go through for a large class of sigmoid functions.

In regard to the choice between initial value coupling and external coupling, it is
noted that from a theoretical point of view the initial value coupling is cleaner, because it
does not tilt the energy surface. Then, all Hadamard points are on the same footing in
regard to stabilizing forces. Since for zero threshold we have the stable point at the origin
(by Theorem 6), the coupling constant A must be chosen large enough to place the initial
signal outside of the crater. Increasing A means placing the initial signal farther out, and
hence has the result of speeding up the DLS action. However, increasing A also leaves less
time for spectral purification, and we may expect a breakdown in associative recall for very
large coupling constants. From the practical standpoint, the external coupling is preferred,
because it provides for a separate input and output of the DLS. In the presence of noise,
the external coupling has the advantage that the BLT output u remains standing on the
input, whereas the original information u is lost soon after reset in the initial value
coupling scheme

It may be surprising that so much theory can be developed about a neural net with
nonlinear activation; the dynamics in the continuum model is governed by N coupled
nonlinear differential equations. Two kinds of nonlinearities are present: the familiar
sigmoid nonlinearity in the neuron output function, and the quadratic activation, involving
the Hadamard business. The reason for the possibility of extensive theoretical development
is, of course, that the stored vectors in the DLS are Hadamard vectors. The properties of
these vectors, orthonormality and others, allow deductions and calculations that would not
be possible in more general or different settings.

The DLS may be seen as a distributed winner take all circuit. As such, it
may have applications beyond the one described here, as second stage of an SRM.

The Hadamard matrices constructed from cyclic S matrices can be generated by
shifts of the vector zNl_ (see Appendix A). This provides a method of constructing
Hadamard vectors in hardware, but for large dimension N the implementation of the vector
ZN- 1 becomes cumbersome. Then, one may consider using random bipolar vectors instead
of Hadamard vectors. For large dimension, random bipolar vectors have a high probability
of being nearly orthogonal, and we may expect most of the theory to go through "on the
average". Alternatively, one can start with an index group defined by a structure function
which is invariant under permutations, and use this group instead of the Hadamard group.
The structure function may be chosen at random, and it would commit the connection
tensor Sabc in the equatielns of motion (15). The symmetry of Sabc is then a consequence
of the invariance of the group structure under index permutations. We see a simple way of

generating permutation invariant structure functions by use of X=-.

The bipolar vectors that would replace the Hadamard vectors in this scheme need to
be computed by the neural net because they must serve as labels for the stored states in the
BLT. But if everything goes as expected, such states arise naturally as settled states of the
DLS, hooked up according to the group structure. By Hebb learning these states can be
impressed, together with the stored states (as outer products) upon the BLT connection
matrix B.

APPENDIX A
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In this appendix a discussion is given of Hadamard matrices and Hadamard vectors,
insofar as needed in this report. Hadamard vectors are bipolar vectors that form an
orthonormal set The norm of the vectors is not unity, but VN. where N is the dimension,
here restricted to be a power of 2. A square matrix, the rows of which are Hadamard
vectors, is called a Hadamard matrix. Hadamard matrices have important application in
signal processing involving multiplexing; they are used in spectrometers and imagers to
improve the signal to noise ratio. Optics employing this method is called "Hadamard
transform optics" [13]. Hadamard matrices are also used in error-correcting codes [13].
They are used here simply because in our SRM there is a need for orthogonal labels that
are bipolar vectors.

The Hadamard vectors are denoted by h., a=1 to N. Labeling the vector

components by the index b=1 to N, the Hadamard matrix with rows h a has the elements

h ab* The orthonormality of the Hadamard vectors is expressed by

haa h b = N6 b (Al)

where ab is the Kronecker. From (Al) and the linear independence of the Hadamard
vectors a second set of orthonormality conditions can be derived:

h aah a = N (A2)

In this report we restrict the Hadamard matrices to be symmetric, and to have
solely + in their first row. For dimensions N that are powers of 2 there are the
Sylvester-type Hadamard matrices [23], which are defined recusively by the scheme

HN HN H

H2N I HN -HN 'H 2 = I+ I

For example, The Sylvester-type Hadamard matrix of dimension 16 is shown below

++--+ +--+ +--+ +--
±++--- -- + ±+-- --- +
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There is a second type of Hadamard matrix. These matrices are constructed from
so-called cyclic S matrices U13], and they exist only for certain dimensions N, including all
powers of 2. The construction of a matrix of this type starts with choosing the first
Hadamard vectors to have all components +. The remaining N-1 Hadamard vectors are
found by taking their first component as +, and the remaining N-1 components as left
shifts of a special N-1 dimensional bipolar vector ZNi1, the construction of which is

discussed by Harwit and Sloane [13]. They also show a list of suc- vectors for several small
values of N. Examples taken from [13] are:

N-1 ZN_1

3 -
7 - -+-+ +

11 -- +---+++-+
15 + + +-+ +--+-+

The Hadamard matrix constructed from z for N=16 is

+ ++--±+-- -+ +

In this report we use the Hadamard matrices constructed from cyclic S matrices.
The dimension N is restricted to a power of 2. For these iladamard vectors Ith we have

Sh aa= N 'al (A4)

by the symmewtry of Hadamard matrices used here, this may also be written as

h =:N6 1  (A5)
We further have

hila=1, Va ,and h al ", Va . (A6)

The Hadamard transform paof a vector p a is given by
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pa= (hVN)h aa (A7)

The same transformation is used for contravariant vectors:

pa= (1/VN)haapa . (A8)

Indices are raised and lowered with the Kronecker 6 as metric tensor. The Hadamard
transform is an orthogonal transformation, i.e., it preserves scalar products. As a result,
one has

Y aY =YaY(M

The inverse Hadamard transforms are:

Pa=(l/WN)h apa, (AlO)
a= a a

pa=(1//N)h a Pa. (All)

For any vector p, the pa may be seen as the components in the neuron frame,

whereas the p a are the components of the vector in the Hadamard frame.

In the sequel we need the group property of the Hadamard vectors. This property is
discussed in detail in [9], and we only give here the results without proof. We have

Theorem Al: For dimensions that are a power of 2, the Hadamard vectors constructed
from cyclic S matrices form a group under component wise multiplication.

This means that

haahla=h ya  V a (A12)

where 7= f(a) •  (A13)

f is called the structure function of the group. The component wise multiplication is a

logical XO, so that (A13) may also be expresed as

ha X=Y h3 = h (A14)
The stucture function can be determined from the Hadamard vectors. For example, we
have, for N=16, f(2,3)=6, and f(2,4)=10, as can be seen from the Hadamard matrix on
page 53. The first Hadamard vector, hl, has all components + and therefore acts as the

identity. It is easy to see that every Hadamard vector is its own inverse,

h aahaa=hla, Va, Va. (A15)

For the structure function, (A15) implies

f(a,a) = 1, V a. (A16)
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Moreover, f(af) =1 ==> a=/3, (A17)
as can be seen as follows. h aaha=hla I V a implies

h aah #a h a = h 1 h Oa "  (A 18)

Because of the symmetry of the Hadamard matrices used, the roles of indices a and a may

be reversed, so that we also have

h aah ab=hac, (A19)

where
c=f(a,b) . (A20)

The function f is symmetric,

f(a,b)=f(b,a), (A21)

and (A20) is invariant under cyclic permutation of indices,

so that (A20) implies
b=f(c,a) . (A22)

APPENDIX B

If the connection tensor is fully symmetric, the velocity vector v given by (15) is
curlfree in the space of signals y, but not in activation space. This is shown as follows.

Considering a as a function of y, we have from (15)

& a/ ayd - & d/ya =

-6da/S"(vd)+bad/s"(va)+(S adb +Sabd)yb(Sdab+Sdba ) y b = 0 , (B1)

by the symmetry of the connection tensor, and the property of the Kronecker b. However,

if , is considered to be a function of v we havea

a IN d-& d/0Va=-'da+ad+(Sadb+Sabd)ybs' (Vd)-(Sdab+Sdba)ybs' (Va), (B2)

and this does not vanish if s' (vd)#s'(va). This can be remedied by multiplying V'a by

s'(va); one has

av S(V v =a"ada a(v )-*, dds"'(vd)-s'(va) bda+s'(vd) bad
+(S adb + S abd)y bs' (V a)S" (v d)-(Sdab +Sdba)y bs' (v d)S'(Va) . (133)

The first two terms cancel each other because of the Kronecker delta. Similarly, the third
and fourth terms cancel. The S terms now cancel because each has the same factor
s' (va)s'(vd), and, of course, the symmetry is needed as well. It follows that the vector field

;'aS' (va) is curlfree in activation space. If we follow this up and take the path integral of
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a S, (va) in activation space we get the same Liapunov function as before:

Sas'(va) dva= ad y a  (B4)

by a change of integration variables. On the right the summation convention is used; we
could not do that on the left because there are too many indices a.

The discussion clarifies the somewhat unnatural construction - adya for the

Liapunov function (20), which is a path integral of the activation velocity vector in signal
space.

APPENDIX C

In this appendix we derive some properties and consequences of the neuron output
function given by (18),

y=s(v) = tanh(gv) , (C1)

where g is the gain at zero. The inverse mapping, from y to v, is

V= 1  ln'+y (C2)v 2gl 1-y"

One has

s,(v) = g sech 2(gv) = g(1-s 2), (C3)

The critical activation v* was introduced in the sequel for estimation purposes; its value is
chosen such that

s(v*) = 1-6 , (C4)

where c is a small positive number. For the hyperbolic tangent (Cl) one has from (C2) for
small

v In (2/f) , (C5)

* 1 ln(2/c) (C6)

and
s'(v*) = gc(2-e) L- 2ge . (C7)

In the proportional region, the signal is proportional to the activation, either
approximately or excactly. For the hyperbolic tangent output function, we need to know
the accuracy of the linear approximation. This accuracy may be calculated as the ratio of
the cubic term to the linear term in the power series expansion of the hyperbolic tangent:

y=tangh(gv)=gv-g3 v 3 /3+ .. (C8)

The ratio of the cubic term to the linear term is
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g2v2 /3zy 2 /3. (C9).

From (24) one has
v 

v

(P(v) = vs- s( ) d = v tanh(gv)-tangh(g ) d =

= v tanh(gv) - (1/g) In cosh(gv) . (C0)

If the energy E of (22) is considered a function in signal space, O needs to be expressed in
terms of y. This can be done by using (C2) in (C10):

O= Y-In 1±Y +-1 In (1/cosh 2(gv))=
2g 1-y 2g (1os(g)

1 {ln !±Y + In (1- tanh 2 (gv))} = 1 {In ! + In (1-y 2 )} =

2 g {(1+y) ln(l+y) + (1-y) In(l-y)}. (Cli)-2g

Hence, for the function f1 in the energy (22) we have

Q = g {(l+Ya) In(1+Ya)+(1-Ya) In(1-ya)}. (C12)

In the sequel we need a polynomial approximation of S1 near the origin. Such an

approximation good to powers ya 3 s

whr L2- R 2/(2g) , (C 13)

where

R2 =yaya . (C14)

For the piecewise linear output function

s(v)=-l if v<-l/g ,
=gv if Iv<1/g, (C15)
= 1 if v>l/g,

the proportional region is given by
I<l/g. (C16)

In the proportional region we have for the function Q)

=--R2 /(2g) ;(C 17)

this can be verified by taking partial derivatives:

/ a/g=va  (C 18)

as required.
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APPENDIX D

For convenience we show here the proof of Lemma 1, which is just Theorem 2 of [9].
The proof is formally altered at some places because of a different factor in the Hadamard
transform.

It should be noted that in this appendix the signal y is restricted to be bipolar, i.e.,
y is a corner pgit of the solid hypercube JN *

The material considered involves the vector Q a defined by (54)

2Qa =N haaY a. (Dl)

where
Ya (1INN) h a Ya (2

is the Hadamard transform of the signals y a'

Before stating and proving Lemma 1, we need some preparation. Define the index
set A:

A={aiy aO} , (D3)

and the disjoint pieces

A+={aIaEA &h aa=+ (D4)

and

Aa={al aA h a=-}. (D5)

Using this decomposition, (Dl) may be written

QaIN =  EA+ a E Y (D6)aEA aAa 0
a a

From (A9) and the fact that the components ya are *1, one has

2
ya = N; (D7)

this may be written as

N= E ya 2+ E ys 2  (D8)
aEA+ aEA aa a

(D6) and (D8) give

2 E+ y a 2  N + Qa/N (D9)
a

and

2 E y 2 N-Qa/N (D1O)
aEA-

since the left hand sides are nonnegative, this implies
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-N2 2< Qa N  (DII)

We show

Lemma Dl: ydN a t , Q a=-N 2  <==> h =-,VaEA.

Proof: To show <---, we note that h aa=-, V aEA, implies that a#l, by (A6), and

Qa N h 2 -N ya N (D12)

by (D7).

To show ==>, we note that Qa=-N 2 and (D9) imply that the set A+ is empty; i.e.,

h a=-,VaEA. J

After this preparation we proceed with

Lemma 1: ydN, Qb=-N 2 , Vb such that yb = -  <===> y is Hadamard #h

Proof: Define the index set
B={bIYb=-l} (D13)

Then the Hadamard transform (D2) may be written as

Ya = (11 N) -JBB ha b+bjB h b} (D14)

The property (A5) of the Hadamard vectors used here implies that

b B hab = N 6al-b B hab , (D15)
so that (D14) may be written

bVN ya = Nb al -2bB h a (D16)

Suppose Qb=-N 2 , V bEB. Then, Lemma DI and (D16) give

a E A, N y a=Nb al +2(N-W)/2 = N al + N-W, (D17)

where
W=y a . (D 18)

and (N-W)/2 is the cardinality of the set B. Hence we have

Lemma D2: Qb= - N2 ,VbEB -==> ,/Nya= N6al +N-W, VaEA.
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There appear to be two cases, Case 1: a=1 EA, and Case 2: a=1 OA

Case 1: a=1 EA. Calculating ya of Lemma D2, we have

vN yl=2N-W . (D19)

Also, from (D2), (D18), and the fact that h has all + components we have

/N yl=W . (D20)

From (D19) and (D20) it follows that
W = N, (D21)

so that y = h 1 , the all positive Hadamard vector. However, for y = h1 (D1) gives

Qb = N2 ,in contradiction with Qb = - N 2 asssumed in Lemma D2. Hence, Case 1 is not

possible within the premises of Lemma D2.

Case 2: a=1 OA . From (D2) for a=1 and (D18) it follows that W=0. Hence, for a41 EA
the ya of Lemma D2 is just VN. With (A9) it follows that

N = =JAYa2 =r N, (D22)

where r is the cardinality of set A. Since (D12) implies r=1, the set A contains only a single
element, say, 7. It follows that y = h, and we may conclude

Qb =-N 2 , V aB ===> y is ladamard t h, (D23)

which is the forward part of Lemma 2.

The converse is also true, since for y=hy -,1, we have y,=O, V a47, and yY=,N,

so that (D1) gives

Qb= N 2h b. (D24)

For index b such that Yb=h-b =- it follows that Qb=-N 2
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